

Welcome and Overview 4–5

Acknowledgements 6-9

Special Thanks 10

Baltimore, Maryland Highlights 12-13

Presidential Invited Speaker 15

IMS Medallion Lecture 16

Short Courses 17-19

Turorials 20-22

Roundtables 23-25

Program Summary 27-39

Scientific Program 40-98

Index 100-115

Grand Ballroom Floor Plan 116

Harborside Ballroom Floor Plan 117

Waterview Ballroom Floor Plan 118

ENAR 2014 SPRING MEETING MARCH 16–19, 2014

Welcome

I am delighted to welcome you to the 2014 ENAR Spring Meeting!

I am indebted to a dedicated team of individuals for diligently planning what promises to be an exciting and enriching program.

For first time attendees of the ENAR Spring Meeting, I extend a heartfelt welcome and hope that you will continue to enjoy the annual meeting for many years to come. For returning attendees, I trust that this year's meeting will be most fulfilling and will energize you to continue to carry out the vital work of statistical practice, research and development. The ENAR Spring Meeting is a wonderful opportunity to attend stimulating scientific sessions targeting the most pressing issues in our field, to deepen our understanding of cutting-edge statistical methods and software through our education program, to connect with old friends and meet new ones, to identify prospective employees/employers, to explore the latest books and software from our exhibitors, and so much more.

Scientific Program Led by Program Chair, Dr. Hernando Ombao of the University of California at Irvine, and Associate Chair, Dr. Qi Long of Emory University, the Program Committee has assembled an outstanding invited scientific program. This would not be possible without the contributions from many of you who volunteered to participate in the invited

sessions as organizers, chairs, and speakers. The invited program features recent advances in a broad set of topics such as statistical methods for longitudinal data, emerging methodology for big data (including, genomics, bioinformatics, imaging, etc.), clinical trials, functional data analysis, survival analysis, and epidemiologic and public health data. The scientific program will feature an expanded number of poster presentations, including invited posters, and contributed poster presentations. The ENAR Regional Advisory Board (RAB) will conduct a poster competition, which has been a resounding success in recent years. Finally, there will be numerous contributed oral presentations, which are an integral part of the Spring Meeting.

Education Program Come and learn from the best! There is no better opportunity to bolster your understanding of methodology and software that may be beneficial in the workplace, to learn about a topic outside of your primary area of specialization, or to deepen your background in an area of interest. The Education Advisory Committee has compiled a set of fabulous short courses and tutorials featuring internationally renowned instructors.

The short course topics cover a range of areas such as advanced high performance computing techniques and strategies for massive data, longitudinal data (including missing data, surrogate endpoints, and joint modeling with survival outcomes), next generation sequencing, adaptive clinical trials, evaluation of prognostic biomarkers, causal analysis, and functional data analysis, among others.

The program will also offer a series of roundtable luncheons with distinguished discussion leaders addressing topics of interest to statisticians in academia, government, and industry.

Keynote Lectures Highlights of the ENAR 2014 Program include speakers for the Presidential Invited Address and the IMS Medallion lecture. I am thrilled that these lectures will be given by preeminent scholars who have made vast contributions within statistics and biostatistics. Dr. Robert Tibshirani, from Stanford University, will deliver the Presidential Invited Address entitled "A Significance Test for the Lasso." Professor Tibshirani has made seminal contributions in penalized regression, most notably the lasso, as well as the analysis of high throughput microarray array data. He has received numerous awards including some of the most distinguished honors in statistics and in science more broadly. He is a member of the National Academy of Sciences, was a recipient of the Committee of Presidents of Statistical Societies (COPSS) Presidents' Award and the Statistical Society of Canada's Gold Medal, and is a fellow of the Institute of Mathematical Statistics (IMS), the American Statistical Association (ASA), and the Royal Society of Canada.

Dr. Xihong Lin, from Harvard School of Public Health, will give the IMS Medallion Lecture. Professor Lin has made a tremendous impact to the theory and practice of biostatistics, including contributions to methodology for mixed models, nonparametric and semiparametric regression, and statistical genetics and genomics. Among Professor Lin's numerous honors, she is the recipient of the COPSS Presidents' Award, the Spiegelman Award, and the National Cancer Institute MERIT Award. She is a Fellow of the ASA and IMS.

Additional Meeting Activities There are a host of other activities at the ENAR Spring Meeting for participants to find opportunities to engage. The Spring Meeting will feature the popular Career Placement Center. For participants seeking employment, be sure to register to gain access to many of the leading organizations in the field including government, academic, and private institutions. The Fostering Diversity in Biostatistics Workshop will be held on Sunday, March 16th. This workshop targets undergraduate students, undergraduate faculty, graduate students, graduate

faculty, and professionals from industry and government, with a focus on recruitment, retention, and promotion of biostatisticians from traditionally under-represented groups. I thank Dr. Knashawn Morales of the University of Pennsylvania and Dr. Simone Gray of the Centers for Disease Control and Prevention for their leadership in organizing this year's workshop. The Council for Emerging and New Statisticians (CENS) will hold an inaugural social event to increase networking opportunities for graduate students and recent graduates. Indicate your interest during the ENAR Spring Meeting registration process. There is a new member reception, and you will find a host of activities for student members at the meeting.

A favorite for many is the Tuesday night social event, which I am excited to announce will be held at the National Aquarium in Baltimore. Those who participate in this year's event will enjoy a wonderful evening of networking, a dinner including authentic Maryland crab cakes, and the National Aquarium which features over 16,000 animals including sharks, birds, frogs, turtles, dolphins, and jellies. This is an event that you do not want to miss!

Meeting Venue The conference hotel, the Marriott Waterfront, is located along Harbor East, which is conveniently situated near the Inner Harbor, Little Italy, and Fell's Point, which offer an array of dining options, bars, and entertainment.

Acknowledgements I would like to thank the Local Arrangements Committee, led by Professor Ciprian Crainiceanu, for their planning efforts to ensure that meeting participants will experience the best that Baltimore has to offer. Finally, I wish to express my sincere gratitude to Kathy Hoskins, our ENAR Executive Director, Katie Earley, Challee Blackwelder, and their other colleagues at Drohan Management for their incredible support in planning the ENAR Spring Meeting. Kathy and her team have been vital in the growing success of ENAR and its annual Spring Meeting. It has indeed been a pleasure working with you!

DuBois Bowman ENAR 2014 President

ACKNOWLEDGEMENTS

ENAR would like to acknowledge the generous support of the 2014 Local Arrangements Committee Chaired by

Ciprian M. Crainiceanu
Department of Biostatistics
Johns Hopkins University
and our student volunteers!

Regional Members of the International Biometric Society Executive Board

Lisa LaVange Sharon-Lise Normand José Pinheiro

Regional Members of the Council of the International Biometric Society

Scarlett Bellamy
Bradley Carlin
Timothy Johnson

We gratefully acknowledge the invaluable support and generosity of our Sponsors and Exhibitors.

Sponsors

Alexion Amgen Biogen Idec Inc.

Cytel Inc.
Eli Lilly & Company
Emory University
Department of
Biostatistics and
Bioinformatics,
Rollins School

of Public Health

Novartis Oncology

Quintiles
Center for
Statistics
in Drug
Development

Rho, Inc. SAS Institute

Statistics Collaborative, Inc.

Statistics in Medicine/Wiley

Exhibitors

Cambridge University Press CRC Press

inVentive Health Clinical

Minitab

Oxford University Press

SAS Institute

SIAM

Society for Industrial and Applied Mathematics

Springer
Texas A&M
University
Department
of Statistics

Wiley

Officers and Committees January–December 2014

Executive Committee | Officers

President DuBois Bowman

Past President Daniel Heitjan

President-Elect José Pinheiro

Secretary Brent Coull (2013 – 2014)

Treasurer Sarah Ratcliffe (2012 – 2013)

Regional Committee (RECOM)

President | Chair DuBois Bowman

Nine Ordinary Members (elected to 3-year terms)

RAB Chair Reneé Moore RAB Chair-Elect Philip Reiss

2012-2014

Francesca Dominici Joseph Hogan Bhramar Mukherjee 2013-2015

Sudipto Banerjee Jeffrey Morris

Dionne Price

Appointed Members of the Regional Advisory Board (3-year terms)

Chair Reneé Moore | Chair-Elect Philip Reiss

2012 – 2014		2013-2015		2014-2016	
Zen Chen	Jeff Leek	Richard Cook	Monnie McGee	Hongyua Cao	Alison Motsinger-Reif
Christine Clark	Jing Ning	Lynn Eberly	Philip Reiss	Susmita Datta	Todd Ogden
Joel Dubin	Mary Sammel	Zhezhen Jin	Peter Thall	Martin Lindquist	Sean Simpson
Mithat Gönen	Brisa Sánchez	Clara Kim	Sharon Xie	Qi Long	Abdus Wahed
Brent Johnson	Li Zhu	Mi-Ok Kim	Elizabeth Zell	Brian Millen	Menggang Yu

Programs

2014 Spring Meeting | Baltimore, MD

Program Chair Hernando Ombao

Program Co-Chair Qi Long

Local Arrangements Ciprian Crainiceanu

2014 Joint Statistical Meeting

Doug Schaubel

2015 Spring Meeting | Miami, FL

Program Chair Mithat Gönen

Program Co-Chair Brisa Sánchez

Local Arrangements Tulay Koru-Sengul

2015 | Joint Statistical Meeting

Olga Marchenko

Biometrics Executive Editor Marie Davidian **Biometrics Co-Editors**

Jeanine Houwing-Duistermaat Russell B. Millar Jeremy Taylor

Biometric Bulletin Editor Dimitris Karlis

JABES Editor Monteserrat Fuentes

ENAR Correspondent for the *Biometric Bulletin* Leslie McClure

ENAR Executive Director Kathy Hoskins

International Biometric Society

Executive Director Dee Ann Walker

Representatives

Committee of Presidents of Statistical Societies (COPSS)

ENAR Representatives

President DuBois Bowman

Past President Daniel Heitjan

President-Elect José Pinheiro

ENAR Standing/Continuing Committees

Nominating Committee (2014)

Chair Dan Heitjan

Members:

Karen Bandeen-Roche (2014)

Brisa Sánchez (2013-2014)

Amita Manatunga (2013-2014)

Sponsorship Committee (2014)

Diane Catellier

University of North Carolina at Chapel Hill

Rhonda Szczesniak

Cincinnati Children's Hospital/ University of Cincinnati

Roger Vaughn

Columbia University

ENAR Representative on the ASA Committee in Meetings

Melanie Wall

Distinguished Student Paper Awards Committee

Karen Bandeen-Roche, Chair

Johns Hopkins Bloomberg School of Public Health

Veera Baladandayuthapani, MD

Anderson Cancer Center

Veronica Berrocal

University of Michigan

Jason Fine

University of North Carolina Chapel Hill

Debashis Ghosh

Penn State University

Joseph Hogan

Brown University

Mingyao Li

University of Pennsylvania

Martin Lindquist

Johns Hopkins Bloomberg School of Public Health

Bhramar Mukherjee

University of Michigan

Jeffrey Morris, MD

Anderson Cancer Center

Brian Neelon

Duke University

Michael Newton

University of Wisconsin

Brian Reich

North Carolina State University

Taki Shinohara

University of Pennsylvania

Julian Wolfson

University of Minnesota

Gui-Shuang Ying

University of Pennsylvania

Hongtu Zhu

University of North Carolina at Chapel Hill

Award Winners

Van Ryzin Award Winner

Yaoyao Xu

University of Wisconsin-Madison

Distinguished Student Paper Award Winners

Ian Barnett

Harvard University

Jonathan Gellar

Johns Hopkins Bloomberg School of Public Health

Fei Jiang

Rice University

Chi Hyun Lee

University of Minnesota

Gen Li

University of North Carolina at Chapel Hill

Qian Liu

University of North Carolina at Chapel Hill

Xiaoxi Liu

University of North Carolina at Chapel Hill

Ai Ni

University of North Carolina at Chapel Hill

Fang-Shu Ou

University of North Carolina at Chapel Hill

Huitong Qui

Johns Hopkins University

Michael Rosenthal

Florida State University

Xu Shu

University of Michigan

Kay See Tan

University of Pennsylvania

Yuan Wang

University of Wisconsin-Madison

Yuying Xie

University of North Carolina at Chapel Hill

Jing Zhang

University of Minnesota

Yiwei Zhang

University of Minnesota-Twin Cities

Jing Zhou

University of North Carolina at Chapel Hill

Jose Zubizarreta

The Wharton School University of Pennsylvania

2014 Fostering Diversity in Biostatistics Workshop

Simone Gray, Co-Chair

Centers for Disease Control

Knashawn H. Morales, Co-Chair

University of Pennsylvania Perelman School of Medicine

Scarlett Bellamy

University of Pennsylvania Perelman School of Medicine

DuBois Bowman

Emory University Rollins School of Public Health

Caprichia Jeffers

Emory University Rollins School of Public Health

Amita Manatunga

Emory University
Rollins School of Public Health

Reneé H. Moore

North Carolina State University

Sastry Pantula

North Carolina State University

Adriana Perez

The University of Texas Health Science Center at Houston

Dionne Price

Food and Drug Administration

DeJuran Richardson

Lake Forest College

Louise Ryan

University of Technology Sydney

Keith Soper

Merck Research Laboratories

Alisa J. Stephens

University of Pennsylvania Perelman School of Medicine

Lance Waller

Emory University
Rollins School of Public Health

2014 RAB Poster Award **Competition Committee**

Reneé Moore, Chair

North Carolina State University

Philip Reiss, Co-Chair New York University

Lan Huo

New York University

Alex lagnocco

North Carolina State University

Domonique Watson

Emory University

Dominique Williams

Eli Lilly

2014 Council for Emerging and New Statisticians (CENS)

RAB Liaisons:

Clara Kim, Chair

Hormuzd Katki

Reneé Moore

Philip Reiss

Members:

Naomi Brownstein

Mallorie Fiero

Lauren Kunz

Xiaosong Li

Victoria Liublinska

Kati McConville

Tapan Mehta

Miles Ott

Ming Wang

Jarcy Zee

Affiliation List

RAB Liaisons:

Clara Kim. Chair

FDA

Hormuzd Katki

National Cancer Institute

Reneé Moore

North Carolina State University

Philip Reiss

New York University

CENS Members:

Lauren Kunz, Biostat Student Harvard School of Public Health

Mallorie Fiero, Biostat Student

University of Arizona

Jarcy Zee, Biostat Student University of Pennsylvania

Naomi Brownstein, Postdoc

Ion Cyclotrone Resonance Program National High Magnetic Field Lab

Florida State University

Tapan Mehta, Asstistant Professor

Dept of Physical Therapy at the Univ. of

Alabama at Birmingham

Ming Wang, Asstistant Professor Biostat and Bioinformatics at Penn State

Miles Ott, Visiting Asstistant Professor

Math at Carleton College

Victoria Liublinska, College Fellow

Stat at the Harvard Grad School of Arts and Sciences

Kati McConville. Researcher

Biostat at Rho Incorporated

Xiaosong Li, Lecturer

Statistics at UNCW

American Association for the **Advancement of Science**

(Joint with WNAR)

Section E | Geology and Geography

Dr. Michael Emch

Section N | Medical Sciences

Dr. Abdus S. Wahed

Section G | Biological Sciences

Dr. Andrea S. Foulkes

Section U | Statistics

Dr. Jessica Utts

Section O | Agriculture

Dr. Andrew O. Finley

National Institute of Statistical Sciences

(FNAR President is also an ex-officio member)

Board of Trustees

Member:

Donna Brogan

Visit the ENAR website:

www.enar.org

as a resource of information on all ENAR activities.

2013 ENAR Program Committee

Hernando Ombao | Chair University of California, Irvine

Qi Long | Associate Chair Emory University

IMS Program Chair

Daniel Scharfstein

Johns Hopkins University

At-Large Members

Paul Albert

NIH-NICHHD

Nilanjan Chatterjee

NIH-NCI

Charmaine Dean

University of Western Ontario

Section Representatives

Veronica Berrocal

Section on ASA Section on Statistics and the Environment University of Michigan

Ivan Chan

ASA Biopharmaceutical Section Merck

Mike Larsen

ASA Section on Survey Research Methods George Washington University

Martin Lindquist

ASA Section on Statistics in Imaging Johns Hopkins University

Madhu Mazumdar

ASA Section on ASA Section on ASA Section on Statistics in Epidemiology Weil Medical College of Cornell University

Jason Roy

ASA Biometrics Section University of Pennsylvania

Yuanjia Wang

ASA Section on Mental Health Research Columbia University

Edward Wegman

ASA Section on Statistics in Defense and National Security George Mason University

Katie Ziegler-Graham

ASA Section on Statistical Education St. Olaf College

Daniela Witten

Section on Statistical Learning and Data Mining University of Washington

ENAR Educational Advisory Committee

DuBois Bowman | '14 ENAR President Columbia University

Amita Manatunga

Emory University

Robert Lyles

Emory University

Ying Guo

Emory University

Local Arrangements Chair

Ciprian Crainiceanu

Johns Hopkins University

ENAR Student Awards 2014

Karen Bandeen-Roche | Chair Johns Hopkins University

ENAR Diversity Workshop 2014

Knashawn Morales | Co-Chair University of Pennsylvania

Simone Gray | Co-Chair

Centers for Disease Control and Prevention

ENAR Executive Team

Kathy Hoskins | Executive Director

Katie Earley | Program Manager

Challee Blackwelder | Administrator

LOCAL INFORMATION

BALTIMORE, CHARM CITY

Baltimore, or Charm City, is a thriving all-American city with world leading research universities such as Johns Hopkins University and the University of Maryland. Baltimore has a thriving economy powered by tourism and a thriving industry including Under Armor, Black and Decker, Domino Sugar, the Port of Baltimore, T. Rowe Price, and Northrop Grumman. Charm City is also the home of the Ravens football team, the 2000 and 2012 Super Bowl champions, and the Orioles baseball team, the 1966, 1970, and 1983 World Series champions.

Baltimore National Aquarium

The Aquarium is just short walk away from the Baltimore Marriott Waterfront Hotel and is the home of a new Australian wing and of the newly remodeled Blacktip Reef. Atlantic bottlenose dolphins, jellyfish, poison frogs, sharks, corals, and octopuses are just some of attractions that will make every visit unforgettable.

Inner Harbor

The Baltimore inner harbor is spectacular, a symbol of the dynamic remaking of the city, and the major touristic attraction of Baltimore. The waterfront provides beautiful views of the marina and easy access to many attractions including the National Aquarium, Maryland Science Center, and the American Visionary Art Museum. Not to be missed are the Fudgery, the water taxy ride to Fort McHenry, or one of the many hour-long water cruises that can be booked on the spot.

Walter's Museum

The Walter's is an internationally renowned art museum with exhibitions spanning more than 5000 years from pre-dynastic Egypt to 20th-century Europe. General admission is free, but watch for the paid special exhibitions; they are a must see.

Fells Point

Fells Point is a historic waterfront neighborhood and an absolute favorite with the locals. Walking around Fells Point marina provides excellent opportunities to dine in some of the best city restaurants including Mezze, The Black Olive, Kali's Court, the Nanami Café or enjoy an all American burger and beer at one of the many bars

BALTIMORE SO MANY THINGS TO DO!

Little Italy

This charming neighborhood is located in the heart of downtown Baltimore and within walking distance of the meeting hotel. Located between the Inner Harbor and historic Fells Point Little Italy has almost 30 restaurants, outdoor movies, bocce tournaments, and friendly narrow streets to explore.

Crabs and Crab Cakes

Picking steamed crabs spiced with Old Bay and eating crab cakes are quintessential Baltimore experiences. There are many places to enjoy an authentic Baltimore culinary experience including Captain James, Nick's Fish House, LP Steamers, Canton Dockside, Riptide by the Bay, Jimmy's Famous Seafood, and Costas Inn. Some may require planning, transportation and calling ahead to check for crab size and availability.

Baltimore offers an amazing assortment of restaurants with a great selection of cuisine including Afghani (The Helmand), American (Charleston, Salt Tavern, The Fleet Street Kitchen, Woodberry Kitchen, Wit & Wisdom, Blue Hill Tavern, Brewer's Art), Ethiopian (Dukem), Greek (Mezze, The Black Olive, Ouzo Bay), Italian (La Scala, Cinghiale, La Tavola), Japanese (Nanami cafe), Jewish (Goldberg's Bagels, Umami), Lebanese (The Lebanese Taverna), French (Petit Louis), Russian (Ze Mean Bean Café, Vernisage), Spanish (Tio Pepe), Turkish (Cazbar). This is just a small selection and there are many, many more restaurants to choose from.

Water Taxi

The water taxi is a wonderful way to visit the inner harbor's best attractions, restaurants, bars, and shopping. It has 17 stops including the Aquarium, Science Center, Harbor East, Fell's Point, and Fort McHenry. On a warm day this is probably the best way to enjoy crabs at Captain James Landing and learn about the history of the American national anthem by visiting Fort McHenry.

Presidential Invited Speaker

A Significance Test for the Lasso

Robert J. Tibshirani, Ph.D.Departments of Statistics and Health Research and Policy Stanford University

In this talk, I consider testing the significance of the terms in a fitted regression, fit via the lasso. I propose a novel test statistic for this problem, and show that it has a simple asymptotic null distribution. This work builds on the least angle regression approach for fitting the lasso, and the notion of degrees of freedom

for adaptive models (Efron 1986) and for the lasso (Efron et. al 2004, Zou et al 2007). I give examples of this procedure, discuss extensions to generalized linear models and the Cox model, and describe an R language package for its computation. In addition, generalizations to a broad range of adaptive fitting such as graphical models and clustering will be outlined. This work is joint with Richard Lockhart (Simon Fraser University), Jonathan Taylor (Stanford University) and Ryan Tibshirani (Carnegie Mellon University).

Biography

Robert Tibshirani is a Professor in the Departments of Statistics and Health Research and Policy at Stanford University. He received a bachelor's degree from the University of Waterloo, a master's degree from the University of Toronto and a Ph.D. from Stanford University. He was a Professor at the University of Toronto from 1985 to 1998.

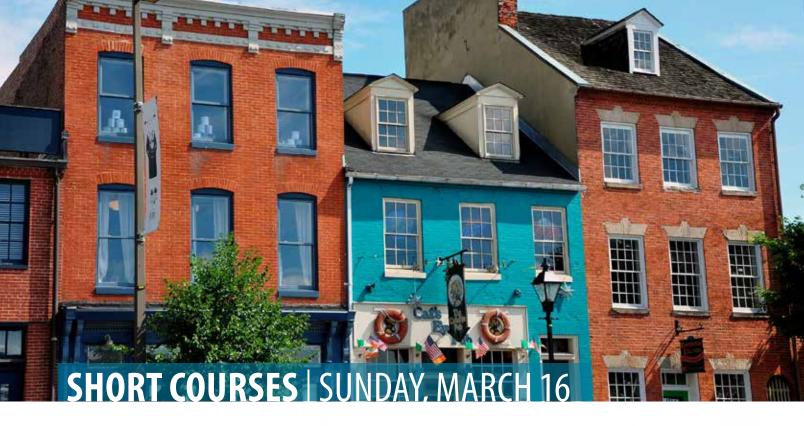
Professor Tibshirani is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics and the Royal Society of Canada. He won the prestigious COPSS Presidents' award in 1996, the NSERC Steacie award in 1997, the CRM-SSC Prize in Statistics in 2000, and the University of Waterloo distinguished alumni achievement award in 2006. He was elected to the National Academy of Sciences in 2013.

In his work he has made important contributions to the analysis of complex datasets, most recently in genomics and proteomics. Some of his most well-known contributions are the lasso, which uses L1 penalization in regression and related problems, generalized additive models and Significance Analysis of Microarrays (SAM). He also co-authored three widely used books "Generalized Additive Models", "An Introduction to the Bootstrap", and "The Elements of Statistical Learning", now in its second edition.

IMS Medallion Lecture

Statistical Genetics and Genomics in the Big Data Era: Opportunities and Challenges in Research and Training

Xihong Lin, Ph.D.Department of Biostatistics
Harvard School of Public Health


The human genome project in conjunction with the rapid advance of high throughput technology has transformed the landscape of health science research. The genetic and genomic era provides an unprecedented promise of understanding genetic underpinnings of complex diseases or traits, study-

ing gene-environment interactions, predicting disease risk, and improving prevention and intervention, and advancing personalized medicine. A large number of genome-wide association studies conducted in the last ten years have identified over 1,000 common genetic variants that are associated with many complex diseases and traits. Massive next generation sequencing data as well as different types of omics data have become rapidly available in the last few years. These big genetic and genomic data present statisticians with many exciting opportunities as well as challenges in data analysis and in interpretation of results. They also call for more interdisciplinary knowledge and research, e.g., in statistics, machine learning, data curation, molecular biology, genetic epidemiology and clinical science. In this talk, I will discuss some of these challenges, such as low-level pre-processing, analysis of rare variants in next generation sequencing association studies; integrative genomics, which integrates different types of oimcs data; and study of gene-environment and gene-treatment interactions. I will also discuss strategies of training next generation quantitative genomic scientists at the interface of statistical genetics and genomics, computational biology and genetic epidemiology, to meet these challenges.

Biography

Xihong Lin is Professor of Biostatistics and Coordinating Director of the Program of Quantitative Genomics at the Harvard School of Public Health (HSPH). She received PhD degree from the Department of Biostatistics of the University of Washington in 1994 under the direction of Professor Norman Breslow. She was on the faculty of the Department of Biostatistics at the University of Michigan between 1994 and 2005 before she joined the HSPH in 2005. Lin received the 2002 Mortimer Spiegelman Award from the American Public Health Association, and the 2006 Presidents' Award from the Committee of the Presidents of Statistical Societies (COPSS). She is an elected fellow of the American Statistical Association. Institute of Mathematical Statistics, and International Statistical Institute. Lin was the former Chair of the COPSS (2010-2012). She is currently a member of the Committee of Applied and Theoretical Statistics of the US National Academy of Science. Lin is a recipient of the MERIT (Method to Extend Research in Time) award from the National Cancer Institute, which provides a long term support for her methodological research. She is the PI of the T32 training grant on interdisciplinary training in statistical genetics and computational biology. She has served on numerous editorial boards of statistical and genetic journals. She was the former Coordinating Editor of Biometrics, and currently the co-editor of Statistics in Biosciences, and the Associate Editor of Journal of the American Statistical Association and American Journal of Human Genetics. She was a permanent member of the NIH study section of Biostatistical Methods and Study Designs (BMRD), and has served on a large number of other study sections of NIH and NSF.

SC1: Longitudinal and Incomplete Data

FULL DAY 8:00 am - 5:00 pm

Geert Molenberghs

Universiteit Hasselt and the Katholieke Universiteit Leuven in Belgium

Geert Verbeke

KU Leuven

Overview

We first briefly present linear mixed models for continuous hierarchical data. The focus lies on the modeler's perspective and on applications. Emphasis will be on model formulation, parameter estimation, and hypothesis testing, as well as on the distinction between the random-effects (hierarchical) model and the implied marginal model.

Second, models for non-Gaussian data will be discussed, with a strong emphasis on generalized estimating equations (GEE) and the generalized linear mixed model (GLMM). To usefully introduce this theme, a brief review of the classical generalized linear modeling framework will be presented. Similarities and differences with the continuous case will be discussed. The differences between marginal models, such as GEE, and random-effects models, such as the GLMM, will be explained in detail.

Third, when analyzing hierarchical and longitudinal data, one is often confronted with missing observations, i.e., scheduled measurements have not been made, due to a variety of (known or unknown) reasons. It will be shown

that, if no appropriate measures are taken, missing data can cause seriously jeopardizing results, and interpretation difficulties are bound to occur. Methods to properly analyze incomplete data, under flexible assumptions, are presented. All developments will be illustrated with worked examples using the SAS System.

The Course

- Session 1: Linear mixed models, model formulation, parameter interpretation, hierarchical versus marginal model interpretation, estimation and inference, empirical Bayes
- **Session 2:** Model families for discrete outcomes, marginal models, generalized estimating equations (GEE)
- Session 3: Generalized mixed models, estimation methods (Laplace, MQL, PQL, Quadrature), comparison with GEE
- Session 4: Missing data mechanisms, problems with nonrandom dropout (i.e., bias, loss of efficiency, etc.), modeling frameworks to handle dropout (selection, pattern mixture and shared parameter models), sensitivity analyses

SC2: Bayesian Methods for Data Analysis, Meta-Analysis, and Adaptive Clinical Trials

FULL DAY 8:00 am - 5:00 pm

Brad Carlin

University of Minnesota

Overview

This course will provide a review of Bayesian inference, metaanalysis, and Bayesian adaptive methods for clinical trials. To begin, the review of Bayesian methods will include prior determination, point and interval estimation, hypothesis testing, prediction, and model choice. There will also be a review of Bayesian computation, including Markov chain Monte Carlo (MCMC) methods, Gibbs sampling, and other extensions. To facilitate practical implementation of topics covered, there will be a computer demonstration of the WinBUGS software in a few standard models. After the lunch break, the course turns to the basics of Bayesian clinical trial design, including the notions of range of equivalence, community of priors, and a discussion of available software. Bayesian adaptive methods will include rule- (3+3) and model-based (CRM, EWOC) designs for finding the maximum tolerated dose (MTD), sequential stopping for futility, efficacy, and/or toxicity, and adaptive randomization and dose allocation. There will also be a discussion of network metaanalysis, as well as the closely related topic of incorporation of historical data in clinical trial design and analysis.

SC3: Statistical Computing for Big Data

FULL DAY 8:00 am - 5:00 pm

Deepak Agarwal

LinkedIn

Overview

Massive data get generated, stored and analyzed every day in various fields like bioinformatics, climatology, internet, telecommunications, and many more. Hadoop has become the most popular distributed file storage (and computing) system in the world. A challenging and growing research area concerns the development of appropriate statistical methods for analyzing such large-scale data. The objective of this short course is to provide a high level introduction to the open-source Hadoop system that uses Map-Reduce framework, and more importantly, to illustrate the use of Map-Reduce and Hadoop for real statistical applications, starting from basics like computing means and variances.

The course will then cover more advanced topics of fitting statistical models to large data via Hadoop. We will mainly focus on applications like computational advertising and content recommendation where the goal is to recommend items to users when visiting a website to maximize some positive response like clicks. This is a high dimensional bandit problem since there is positive utility in showing items that have low mean and high variance. A practical approach is to reduce the dimension through multi-level bilinear random effects model and couple it with classical bandit solutions. Numerous examples of real systems the author has deployed at big web companies like Yahoo! and LinkedIn will be used to illustrate the methods. Special focus will be on scalable model fitting of mixed effects generalized linear models fitted to datasets consisting of hundreds of millions of observations and hundreds of thousands of predictors.

SC4: Statistical Methods for Genome Wide Regional Analysis with Next Generation Sequencing Data

HALF DAY 8:00 am - 12:00 noon

Rafael Irizarry

Harvard University

Hao Wu

Emory University

Overview

Genome wide regional analysis is the task of detecting genomic regions of certain interest from whole-genome data. Examples of these regions include protein-binding sites where different proteins interact with DNA, histone modification regions, and regions exhibiting differential DNA methylation between different biological contexts. High-throughput experiments such as next-generation sequencing (NGS) enable the detection of these regions at the whole-genome scale. The data collected from these experiments are tightly spaced on the linear genome. At the regions of interest, the data show different distribution from the majority of the genome, and sometimes look like short and pointy "peaks" or broad "blocks" when plotting against the genomic coordinates. So the methods of detecting these regions have the general theme of "peak/block detection".

In this half-day short course, we will cover the statistical methods and software for peak/block detection from NGS data. We will first provide a general introduction to NGS technology and its applications. Then we will focus on two specific applications of NGS: ChIP-seq for protein binding site and histone modification region detection, and bisulfite sequencing (BS-seq) for detection of DNA methylation regions. The data from each application suffer from systematic biases

that need to be carefully accounted for in order to design sound statistical methods for analyses. We will introduce the biological motivation, technical procedures, raw data formats, characteristics of the data, and then provide an in-depth review of the statistical methods. In the computer lab, we will provide hands-on exercise of sequence mapping and statistical analysis using open source software such as R/Bioconductor.

The Course

- Introduction to NGS technologies
- Statistical methods for ChIP-seq and BS-seq data analyses
- Computer lab includes following exercises
- Sequence alignment using bowtie
- Use GenomicRanges and GenomicFeatures
 Bioconductor package to analyze and annotate
 ChIP-seq analysis results
- Use bsseq Bioconductor package to analyze BS-seq data

SC5: Statistical Evaluation of Prognostic Biomarkers

HALF DAY 8:00 am - 12:00 noon

Patrick Heagerty

University of Washington

Overview

This course will introduce predictive accuracy concepts that allow evaluation of time-dependent sensitivity and specificity for prognosis of a subsequent event time. We will overview options that are appropriate for both baseline markers and for longitudinal markers. Methods will be illustrated using examples from HIV and cancer research and we will highlight R packages that are currently available.

SC6: Joint Modeling of Longitudinal and Survival Data

HALF DAY 1:00 pm - 5:00 pm

Joseph G. Ibrahim

University of North Carolina at Chapel Hill

Overview

In this short course, we will examine in depth statistical methods for joint modeling of longitudinal and survival data. Both frequentist and Bayesian approaches will be examined. The types of joint models that will be discussed are selection models, pattern mixture models, and shared parameter

models. Both linear mixed models as well as generalized linear mixed models will be discussed for the longitudinal models and Cox-type, piecewise constant hazard, as well as cure rate models will be discussed for the survival component. Both univariate and multivariate survival models will be discussed as well as multivariate longitudinal models. Several types of applications will also be discussed including ones in cancer, vaccine studies, quality of life studies, and AIDS research. Missing data issues will also be examined, and SAS and R software for fitting joint models will be illustrated in detail.

The Course

- Introduction to joint models: selection, pattern mixture and shared parameter models
- A review of the existing frequentist and Bayesian methodologies for joint modeling with applications to cancer, vaccine studies, quality of life studies, and AIDS research
- SAS and R software for fitting joint models with applications to cancer, vaccine studies, quality of life studies, and AIDS research
- Multivariate joint models of longitudinal and survival data
- Joint cure rate models
- Model assessment and diagnostics
- Clinical trials design using joint models

SC7: Bayesian Disease Mapping with INLA: An Introduction

HALF DAY 1:00 pm - 5:00 pm

Andrew Lawson

Medical University of South Carolina

Overview

This course will cover methodology and computational strategies for Bayesian disease mapping, beginning with an introduction to the Bayesian modeling paradigm and basic disease mapping concepts. The course will proceed to discuss disease mapping models with hierarchical structure and posterior sampling versus posterior approximation. For approximation methods, particular attention will be devoted to the integrated nested Laplace approximation (INLA) and its implementation with the R package INLA. Examples of fitting disease mapping models using INLA will be presented, and sample R programs will be provided to course attendees.

MONDAY, MARCH 17

T1: An Introduction to Comparative Effectiveness Research

8:30 am - 10:15 am

Sharon-Lise Normand

Harvard School of Public Health

Description

Comparative Effectiveness Research (CER) refers to a body of research that generates and synthesizes evidence on the comparative benefits and harms of alternative interventions to prevent, diagnose, treat, and monitor clinical conditions, or to improve the delivery of health care. The evidence from CER is intended to support clinical and policy decision making at both the individual and the population level. While the growth of massive health care data sources has given rise to new opportunities for CER, several statistical challenges have also emerged. This tutorial will provide an overview of the types of research questions addressed by CER, review the main statistical methodology currently utilized, and highlight areas where new methodology is required. Examples from cardiology and mental illness will illustrate substantive and methodological issues.

T2: Functional Data Analysis: Techniques and Applications

10:30 am - 12:15 pm

R. Todd Ogden and Jeff Goldsmith

Columbia University

Description

As modern technological advances allow the collection of increasingly large and complex datasets, there is urgent need for practitioners to be able to analyze and model such data. We will focus on one special type of data: functional data, which consists of all data measured over some continuum and thus can be regarded as being a function of some continuous variable. Examples include growth curves (any data collected over time), spectral data, imaging data, and so on.

This tutorial will provide an introduction to the general topic of functional data analysis targeted to the practitioner. We will describe various techniques in common use in the area (see outline below) and illustrate these with real data examples. In addition, we will provide code used to carry out the various analyses, allowing participants to quickly get up to speed in performing their own analyses of functional data.

The Tutorial

- Functional data examples and terminology
- Descriptive analysis techniques
- Smoothing techniques and basis functions
- Functional principal component analysis
- Linear regression models with functional data
- Scalar-on-function regression

- Function-on-scalar regression
- Function-on-function regression
- Brief overview of other modern advances
- Nonparametric functional data analysis
- Multilevel and longitudinal functional data

T3: Nonparametric Bayesian Data Analysis

1:45 pm - 3:30 pm

Peter Müller

University of Texas, Austin

Description

All models are wrong, but some are useful. Many statisticians know and appreciate G.E.P. Box's comment on statistical modeling. Often the choice of the final model is a compromise between an accurate representation of the experimental conditions, a preference for parsimony and the need for a practicable implementation. The competing goals are not always honestly spelled out, and the resulting uncertainties are not fully described. Over the last 20 years, a powerful inference approach that allows mitigating some of these limitations has become increasingly popular. Bayesian nonparametric (BNP) inference allows acknowledging uncertainty about an assumed sampling model while maintaining a practically feasible inference approach. We could take this feature as a pragmatic characterization of BNP as flexible prior probability models that generalize traditional models by allowing for positive prior probability for a very wide range of alternative models, while centering the prior around a parsimonious traditional model. A formal definition of BNP is as probability models on infinite dimensional parameter spaces. A typical application of BNP is to density estimation.

In this tutorial we review some of the popular models, including Dirichlet process (DP) models, Polya tree models, DP mixtures and dependent DP (DDP) models. We will review some of the general modeling principles, including species sampling models, stick breaking priors, product partition models for random partition and normalized random measures with independent increments. We will briefly discuss some of the main computational algorithms and available software. The discussion will be illustrated by applications to problems in biostatistics and bioinformatics.

T4: Quantile Regression for Survival Analysis

3:45 pm - 5:30 pm

Limin Peng

Emory University

Description

Quantile regression, as a significant extension of the traditional accelerated failure time model, has many natural appeals for survival analysis. It offers flexibility to dynamically assess the relationships between survival outcomes and covariates while retaining easy physical interpretation. Many methods developed for quantile regression with survival data also have nice computational features, which are expected to foster their biomedical applications. In this tutorial, the main questions to be addressed include: (1) what can quantile regression offer beyond standard survival analysis? (2) what are the well-developed approaches that can readily be used for analyzing survival data? (3) how to implement these methods in practice? We will conclude with some remarks on limitations and challenges in this field.

TUESDAY, MARCH 18

T5: An Introduction to High-Performance Computing with R

8:30 am - 10:15 am

John Emerson

Yale University

Description

This tutorial will introduce you to topics in high-performance computing with R. We will quickly explore the new parallel package (containing snow and multicore). We will then concentrate on the elegant framework for parallel programming offered by packages foreach and the associated parallel backends. We will touch upon a range of related topics including memory management and algorithmic efficiency. Time permitting, we will conclude with basic examples of handling larger-than-RAM numeric matrices and use of shared memory.

T6: Causal Mediation Analysis

1:45 pm - 3:30 pm

Tyler VanderWeele

Harvard School of Public Health

Description

This tutorial will cover some of the recent developments in causal mediation analysis and provide practical tools to implement these techniques. Mediation analysis concerns assessing the mechanisms and pathways by which causal effects operate. The lecture will cover the relationship between traditional methods for mediation in epidemiology and the social sciences and those that have been developing within the causal inference literature using natural direct and indirect effects. Methods for dichotomous, continuous, and time-to-event outcomes will be described. Special attention will be given to the strong assumptions about confounding that must be made to identify direct and indirect effects. The tutorial will discuss the use and implementation of sensitivity analysis techniques to assess how sensitive conclusions are to violations of confounding assumptions. Discussion will be given to how such mediation analysis approaches can be extended to settings in which data come from a case-control study design. The methods will be illustrated by various applications to perinatal, genetic and social epidemiology.

T7: Cure Models and Their Applications

3:45 pm - 5:30 pm

Jeremy M. G. Taylor

University of Michigan

Paul Y. Peng

Queen's University

Description

Cure models refer to a class of extended survival models for survival data with a cure fraction. The standard survival models often assume that subjects in a study will experience the event of interest with sufficient follow-up without censoring. However, this assumption may not be appropriate in situations such as cancer studies where patients may be cured and will not experience relapse, however long the follow-up, and cure models must be considered to analyze survival data in such studies. Cure models also find applications in other disciplines, such as epidemiology, psychology, public health and economics. The last 15 years witnessed a rapid growth in extending survival models to accommodate potentially cured subjects. New statistical methodologies were developed to extend the existing survival models, and the newly proposed cure models greatly expand the applicability of cure models to various types of survival data with a cured fraction and provide appealing ways to interpret the results of analysis, compared to standard survival analysis models. The tutorial will cover the mixture model and bounded cumulative hazard formulation of cure models, estimation methods. identifiability issues, software and extensions to clustered data. The instructors will introduce some real life data sets from clinical studies, present necessary details of the cure models and recent advances, and demonstrate the use of the cure models on the data with software

MONDAY, MARCH 17 | 12:15 PM - 1:30 PM

R1: Writing a Successful Grant in a Challenging Funding Climate: Strategies for Statistical and Other Scientific Review Panels

Amita Manatunga

Emory University

Description

I will focus on strategies for writing a successful NIH grant application to support statistical methodological research. I will begin with an outline of the grant submission and review processes and descriptions of popular NIH grant mechanisms, namely R01, R03 and R21 grants. I will describe characteristics of high-quality grant applications including the formulation of specific aims and preliminary data with the emphasis on significance and innovation. Other discussions will include strategies for submitting methodological grants to other Study Sections besides to the Biostatistical Methods and Research Design (BMRD) study section.

R2: Key Elements of a Successful Career as a Tenure Track Faculty Member

Francesca Dominici

Harvard School of Public Health

Description

We will have an informal discussion regarding challenges and opportunities for junior tenure track faculty in quantitative departments. We will discuss topics related to: balancing papers and grant submissions, management of interdisciplinary collaborations, teaching, negotiation skills, work family balance etc.

R3: Statistics and the Law: Statisticians as Expert Witnesses

Bruce Levin

Columbia University

Description

How is statistical evidence presented and used in legal proceedings, especially from the perspective of an expert witness? Statistical evidence plays an important role in legal proceedings such as toxic tort cases, class actions in the areas of equal employment opportunity and equal opportunity in housing, voting rights cases, patent disputes, challenged elections, adverse events in drug trials, calculation of damages resulting from theft, collusion, health insurance fraud, and other audits involving sampling, and many more, in settings ranging from jury trials, bench trials, administrative hearings, arbitration hearings, depositions, and the lawyer's office. In addition, studies of the legal system itself are proliferating and are increasingly statistical in nature, with entire journals devoted to the subject. We will discuss the following topics (as time permits): communicating statistical concepts and findings clearly and effectively, in both verbal testimony and written reports; do's and don't's of being an expert witness; how lawyers make effective use of experts; what experts should expect in and out of the courtroom; the adversarial paradigm versus the academic research paradigm; and relevant ethical issues. The discussion leader has over 35 years of experience working with lawyers in litigation support, publishing scholarly legal articles with attorneys, and testifying as an expert statistical witness in legal proceedings. He is co-author with lawyer Michael O. Finkelstein of the textbook Statistics for Lawyers (2nd edition, Springer, 2001), the third edition of which is forthcoming.

R4: Research Opportunities at the US Census Bureau

Thomas A. Louis

Johns Hopkins and U.S. Census Bureau

Description

In order to meet the challenges of efficiently obtaining valid demographic, economic, and activity-based information, making it available to the public while protecting confidentiality, research at the U.S. Census Bureau and other federal statistical agencies, indeed survey research more generally, burgeons. At the roundtable I'll briefly describe the Research & Methodology directorate, list major research goals with related statistical and computational issues and methods. Many are similar to those addressed by and used in Biostatistics and Informatics, and we can consider a subset. We'll close with a discussion of career opportunities. Visit (http://www.census.gov/research/) for some background.

R5: The Leadership Role of a Statistician on Interdisciplinary Research Teams

Scarlett Bellamy

University of Pennsylvania

Description

Informal discussion will primarily focus on identifying leadership opportunities and roles in the context of interdisciplinary research teams. These may be research based (e.g., statistical leadership for an analytical core for a large Center) or training-focused (e.g., serving as PI for an institutional training grant). We will also discuss key elements for successful leadership as well as identify strategies for being invited to take on such roles.

R6: The Role of Statisticians at the FDA

Dionne L. Price

Food and Drug Administration

Description

The Food and Drug Administration (FDA) is composed of seven centers which collectively employ over 250 statisticians. Statisticians at the FDA are an integral part of multidisciplinary teams dedicated to assuring the safety and efficacy of human and veterinary drugs, biological products, medical

devices, our nation's food supply, cosmetics, and products that emit radiation. Statisticians analyze and evaluate data, provide leadership, promote innovation in study designs and statistical techniques, and conduct methodological research aimed at addressing the many complex issues that arise in a regulatory environment. FDA statisticians utilize their statistical training and knowledge to directly impact the public health. Roundtable participants will learn the role of statisticians at the FDA and potential paths to successful careers with the Agency.

R7: Publishing Without Perishing: Strategies for Success in Publishing in (Bio)statistical Journals

Marie Davidian

North Carolina State University

Description

Contributing to the advance of our discipline through publication of articles in peer-reviewed journals is a fundamental expectation for both junior and not-sojunior biostatistical researchers alike. Success in publishing one's work ensures that it will be widely disseminated to researchers and practitioners who stand to benefit. In addition, funding agencies and academic institutions place considerable importance on a successful record of publication. Accordingly, understanding the peer review and editorial processes of top journals and mastering the art of writing an effective journal article are keys to success in publishing. How does one determine the best outlet for one's work? What are the essential elements of a successful journal article? How does one maximize the chance of acceptance? What strategies can ensure that a published paper is read and cited? How does one make optimal use of limited space and additional supplementary material in conveying the message? What are the roles of the editor, associate editor, and referees? What considerations do editors use when evaluating a paper? This roundtable will provide a forum for candid discussion of these and other questions.

R8: Preparing for Leadership Opportunities in the Pharmaceutical Industry

Aarti Shah

Eli Lilly and Company

Description

Tom Davenport in his book Competing on Analytics writes "The companies that are winning are those which are deriving business benefits through deep and sophisticated analytics." Who will lead companies to translate the sophisticated analytics to business benefits? Is it the statistician? If yes, what leadership skills does a statistician need in addition to his or her deep technical knowledge? In this session, we will discuss leadership skills that are absolutely necessary for today's statistician to be successful and how one goes about developing these skills. We will explore the topic of "Statistical Leadership".

R9: Preparing for Leadership in Statistics

Michael Kosorok

University of North Carolina at Chapel Hill

Description

We will discuss how statisticians can prepare for leadership roles during the course of their career. This will include a review of fundamental leadership skills applicable to both small and large groups, as well as specialized leadership skills needed to lead academic departments and other similar organizations. We will explore the benefits of delegation, empowering others, and maintaining flexibility and balance. We will also discuss ways to help students prepare for future leadership roles and the pros and cons of accepting leadership positions.

PROGRAM SUMMARY

Saturday, March 15			
3:30 pm – 5:30 pm	Conference Registration	Grand Ballroom Registration (3rd Floor)	
Sunday, March	16		
7:30 am – 6:30 pm	Conference Registration	Grand Ballroom Registration (3rd Floor)	
8:00 am – 12:00 pm	SHORT COURSES		
	SC4: Statistical Methods for Genome Wide Regional Analysis with Next Generation Sequencing Data	Grand Ballroom VIII (3rd Floor)	
	SC5: Statistical Evaluation of Prognostic Biomarkers	Grand Ballroom X (3rd Floor)	
8:00 am – 5:00 pm	SHORT COURSES		
	SC1: Longitudinal and Incomplete Data	Grand Ballroom III (3rd Floor)	
	SC2: Bayesian Methods for Data Analysis, Meta-Analysis and Adaptive Clinical Trials	Grand Ballroom IV (3rd Floor)	
	SC3: Statistical Computing for Big Data	Grand Ballroom I (3rd Floor)	
12:30 pm – 5:30 pm	DIVERSITY WORKSHOP	Essex Room (4th Floor)	
1:00 pm – 5:00 pm	SHORT COURSES		
	SC6: Joint Modeling of Longitudinal and Survival Data	Grand Ballroom X (3rd Floor)	
	SC7: Bayesian Disease Mapping with INLA: An Introduction	Grand Ballroom VIII (3rd Floor)	

Cupday March	16 /	
Sunday, Marci	116 (continued)	
3:00 pm – 6:00 pm	Exhibits Open	Grand Ballroom Foyer (3rd Floor)
4:00 pm – 6:30 pm	PLACEMENT SERVICE	Waterview Rooms ABC (Lobby Level)
4:30 pm – 7:00 pm	ENAR EXECUTIVE COMMITTEE (by Invitation Only)	Waterview D (Lobby Level)
7:30 pm – 8:00 pm	NEW MEMBER RECEPTION	Grand Ballroom (3rd Floor)
8:00 pm – 11:00 pm	SOCIAL MIXER AND POSTER SESSION	Grand Ballroom (3rd Floor)
	1. Posters: Invited Poster Session	
	2. Posters: Clinical Trials and Study Design	_
	3. Posters: Bayesian Methods	
	4. Posters: Statistical Genetics and Genomics	_
	5. Posters: Prediction, Prognostics, Diagnostic Testing	_
	6. Posters: Survival Analysis	
	7. Posters: Imaging, High Dimensional Data, Biomarkers, and Microarray	_
	8. Posters: Environmental and Longitudinal Data Analysis	_
	9. Posters: Epidemiology and Causal Inference	_
	10. Posters: Non Parametric and Non Linear Methods	_
	11. Posters: Variable Selection, Machine Learning and Other	

-	_	
Monday, Marc	h 17	
7:30 am – 5:00 pm	Conference Registration	Grand Ballroom (3rd Floor)
7:30 am – 5:00 pm	Speaker Ready Room	Boardroom (3rd Floor)
8:30 am – 5:30 pm	Exhibits Open	Grand Ballroom Foyer (3rd Floor)
8:30 am – 10:15 am	TUTORIAL	
	T1: An Introduction to Comparative Effectiveness Research	Harborside A (4th Floor)
	SCIENTIFIC PROGRAM	
	12. Massive Online Open Statistics (MOOS): Should we be Teaching Statistics to 100,000s of Thousands at a Time?	Grand Ballroom I (3rd Floor)
	13. Council for Emerging and New Statisticians (CENS) Invited Session: Should I do a PostDoc?	Grand Ballroom V (3rd Floor)
	14. Adaptive Randomized Trial Designs and Improved Analysis Methods to Learn which Subpopulations Benefit from which Treatments	Grand Ballroom II (3rd Floor)
	15. Statistical Methods for Complex Structured Biomedical Object Data	Grand Ballroom VI (3rd Floor)
	16. Multivariate Analysis in High Dimensions	Grand Ballroom III (3rd Floor)
	17. Recent Advances in Lifetime Data Analysis	Grand Ballroom IV (3rd Floor)
	18. Contributed Papers: Epidemiologic Methods	Atlantic Room (3rd Floor)
	19. Contributed Papers: Computational Methods and Implementation	Bristol Room (3rd Floor)
	20. Contributed Papers: Non-parametric and Semiparametric Methods in Functional Data Analysis	Grand Ballroom X (3rd Floor)
	21. Contributed Papers: Statistical Methods for Microarray and Biomarker Data	Grand Ballroom VII (3rd Floor)

Monday, Marcl	h 17 (continued)	
	22. Contributed Papers: Machine Learning	Grand Ballroom IX (3rd Floor)
	23. Contributed Papers: Multiple Testing	Chasseur Room (3rd Floor)
	24. Contributed Papers: Methods for Statistical Genetics	Grand Ballroom VIII (3rd Floor)
9:30 am – 4:30 pm	PLACEMENT SERVICE	Waterview Rooms (Lobby Level)
10:15 am – 10:30 am	Refreshment Break with Our Exhibitors	Grand Ballroom Foyer (3rd Floor)
10:30 am – 12:15 pm	TUTORIAL	
	T2: Functional Data Analysis: Techniques and Applications	Harborside A (4th Floor)
	SCIENTIFIC PROGRAM	
	25. Statistical Innovations for Studying the Human Brain Function	Grand Ballroom II (3rd Floor)
	26. Meta-analysis of Gene-environment Interaction in the Post-GWAS Era	Grand Ballroom VI (3rd Floor)
	27. Statistics Methods for High-Throughput Genomics	Grand Ballroom V (3rd Floor)
	28. Personalized Medicine: Better Treatment for the Patient or the Right Patient for the Treatment?	Grand Ballroom VIII (3rd Floor)
	29. Recent Advances in Statistical Methods for Meta-Analysis	Grand Ballroom III (3rd Floor)
	30. Subgroup Analysis and Personalized Prediction	Grand Ballroom IX (3rd Floor)
	31. Latent Variable Modeling for Multiple Outcomes and Growth Models in Psychiatric Studies	Grand Ballroom VII (3rd Floor)
	32. Contributed Papers: Bayesian Analysis of High Dimensional Data	Grand Ballroom I (3rd Floor)
	33. Contributed Papers: Genetics and Epidemiologic Study Design	Grand Ballroom IV (3rd Floor)
	34. Contributed Papers: Non-linear Models	Grand Ballroom X (3rd Floor)

Monday, Marc	h 17 (continued)	
	35. Contributed Papers: Survival Analysis for Clinical Trial Data	Atlantic Room (3rd Floor)
	36. Contributed Papers: Clustered Data Methods	Bristol Room (3rd Floor)
	37. Contributed Papers: Statistical Methods for Longitudinal Data	Chasseur Room (3rd Floor)
12:15 pm – 1:30 pm	ROUNDTABLE LUNCHEONS	Dover Rooms (3rd Floor)
12:30 pm – 4:30 pm	REGIONAL ADVISORY BOARD (RAB) LUNCHEON MEETING (by Invitation Only)	Falkland Room (4th Floor)
1:45 pm – 3:30 pm	TUTORIAL	
	T3: Nonparametric Bayesian Data Analysis	Harborside A (4th Floor)
	SCIENTIFIC PROGRAM	
	38. Recent Developments in Estimating the Health Effects of Air Pollution and Regulation	Grand Ballroom VIII (3rd Floor)
	39. Recent Advances in Casual Reference	Grand Ballroom III (3rd Floor)
	40. Social Network Data: Challenges and Opportunities	Grand Ballroom II (3rd Floor)
	41. Statistics and Computing for High-throughput Sequencing Data	Grand Ballroom V (3rd Floor)
	42. Variable Selection and Analysis of High Dimensional Data	Grand Ballroom I (3rd Floor)
	43. Functional Data Analysis and its Applications in Genetics	Grand Ballroom VI (3rd Floor)
	44. Emerging Statistical Challenges with Complex Longitudinal or Functional Data	Grand Ballroom IX (3rd Floor)
	45. Contributed Papers: Genome Wide Association Studies	Grand Ballroom IV (3rd Floor)

Monday, March 17 (continued)		
	46. Contributed Papers: Applications of Bayesian Methods	Atlantic Room (3rd Floor)
	47. Contributed Papers: High Dimensional Data	Grand Ballroom VII (3rd Floor)
	48. Contributed Papers: Clinical Trials	Bristol Room (3rd Floor)
	49. Contributed Papers: Personalized Medicine and Variable Subset Selection	Grand Ballroom X (3rd Floor)
	50. Contributed Papers: Analysis of Clustered Data	Chasseur Room (3rd Floor)
3:30 pm – 3:45 pm	Refreshment Break with Our Exhibitors	Grand Ballroom Foyer (3rd Floor)
3:45 pm – 5:30 pm	TUTORIAL	
	T4: Quantile Regression for Survival Analysis	Harborside A (4th Floor)
	SCIENTIFIC PROGRAM	
	51. The Role of Statistics in Shaping Public Policy	Grand Ballroom II (3rd Floor)
	52. Having it all: Weighting to Achieve Balance	Grand Ballroom V (3rd Floor)
	53. Biostatistical Methods for Integrative Genomics	Grand Ballroom VI (3rd Floor)
	54. Safety Surveillance Monitoring through Signal Detection	Grand Ballroom I (3rd Floor)
	55. Multiple Testing and Simultaneous Inferences in Complex Settings	Grand Ballroom III (3rd Floor)

Monday, March 17 (continued) **Grand Ballroom IX** 56. **New Developments in Bayesian Nonparametrics** (3rd Floor) **Grand Ballroom VIII Contributed Papers: Statistical Genetics** (3rd Floor) and Genomics **Grand Ballroom IV** 58. **Contributed Papers: Imaging** (3rd Floor) **Grand Ballroom VII** 59. (3rd Floor) **Contributed Papers: Semi-Parametric and Non-Parametric Models in Survival Analysis** Atlantic Room **Contributed Papers: Hierarchical Models** (3rd Floor) 61. Grand Ballroom X **Contributed Papers: Methods for Removing** (3rd Floor) **Selection Bias and Confounding** 62. **Bristol Room** (3rd Floor) **Contributed Papers: Functional Data Analysis** Chasseur Room 63. **Contributed Papers: Recent Advances in** (3rd Floor) **Bayesian Methods** 5:30 pm - 6:30 pm **CENS STUDENT MIXER** Dover Room (3rd Floor) PRESIDENT'S RECEPTION Laurel Room A 6:00 pm - 7:30 pm

(by Invitation Only)

(4th Floor)

Tuesday, Marc	h 18	
7:30 am – 5:00 pm	Conference Registration	Grand Ballroom (3rd Floor)
7:30 am – 5:00 pm	Speaker Ready Room	Boardroom (3rd Floor)
9:30 am – 3:30 pm	PLACEMENT SERVICE	Waterview Rooms (Lobby Level)
8:30 am – 5:30 pm	Exhibits Open	Grand Ballroom Foyer (3rd Floor)
8:30 am – 10:15 am	TUTORIAL	
	T5: An Introduction to High-Performance Computing with R	Dover Room (3rd Floor)
	SCIENTIFIC PROGRAM	
	64. Statistical Learning for Complex Multivariate Biomedical Data	Grand Ballroom VIII (3rd Floor)
	65. Statistical Challenges in Studies of Environmental, Reproductive and Perinatal Health	Harborside Room A (4th Floor)
	66. New Developments in Statistical Methodologies for the Analysis of Disease Data	Grand Ballroom II (3rd Floor)
	67. Recent Development and Application of Bayesian Methods for the Probability of Success and Decision Making in Clinical Trials	Harborside Room B (4th Floor)
	68. Functional Data Analysis: Show Me the Data	Grand Ballroom III (3rd Floor)
	69. Latent Class Models for Diagnostic Testing with Applications in Psychiatry	Grand Ballroom IV (3rd Floor)
	70. Statistical Methods for Biomarker Evaluation	Grand Ballroom I (3rd Floor)
	71. Contributed Papers: Semi-Parametric and Non-Parametric Models	Grand Ballroom X (3rd Floor)
	72. Contributed Papers: Joint Models for Longitudinal and Survival Data	Bristol Room (3rd Floor)
	73. Contributed Papers: Statistical Methods in Epidemiology	Grand Ballroom VII (3rd Floor)

Tuesday, Marc	h 18 (continued)	
	74. Contributed Papers: Adaptive Designs and Randomization	Atlantic Room (3rd Floor)
	75. Contributed Papers: Next Generation Sequencing	Grand Ballroom IX (3rd Floor)
	76. Contributed Papers: Statistical Methods for Survival Analysis	Chasseur Room (3rd Floor)
10:15 am – 10:30 am	Refreshment Break with Our Exhibitors	Grand Ballroom Foyer (3rd Floor)
10:30 am – 12:15 pm	77. PRESIDENTIAL INVITED ADDRESS	Grand Ballrooms V and VI (3rd Floor)
12:30 pm – 4:30 pm	REGIONAL COMMITTEE MEETING (by Invitation Only)	James Room (4th Floor)
1:45 pm – 3:30 pm	TUTORIAL	
	T6: Causal Mediation Analysis	Dover Room (3rd Floor)
	SCIENTIFIC PROGRAM	
	78. JABES Invited Session	Grand Ballroom VIII (3rd Floor)
	79. Recent Advances in Statistical Methods for Missing Data	Grand Ballroom III (3rd Floor)
	80. Big Data Methods in Biostatistics	Grand Ballroom II (3rd Floor)
	81. Statistical Prediction Models for Medical Decision Making	Grand Ballroom IV (3rd Floor)
	82. Recent Developments in Statistical Genetics, Genomics, and their Applications	Grand Ballroom V (3rd Floor)
	83. Improved Statistical Modeling and Understanding of Gene Expression and Transcription Regulation using Next Generation Sequencing and Other High Throughput Technologies	Grand Ballroom VI (3rd Floor)
	84. Statistical Challenges in Public Health Research at the CDC	Grand Ballroom VII (3rd Floor)

Tuesday, March	18 (continued)	
	85. Innovative Bayesian Nonparametrics in Biostatistics	Grand Ballroom I (3rd Floor)
	86. Contributed Papers: New Developments in Survival Analysis	Grand Ballroom X (3rd Floor)
	87. Contributed Papers: Causal Inference	Atlantic Room (3rd Floor)
	88. Contributed Papers: Non-Parametric Analysis of Biomedical Data	Bristol Room (3rd Floor)
	89. Contributed Papers: High Dimensional Imaging Data	Grand Ballroom IX (3rd Floor)
	90. Contributed Papers: New Methods in Genomics	Chasseur Room (3rd Floor)
3:30 pm – 3:45 pm	Refreshment Break with Our Exhibitors	Grand Ballroom Foyer (3rd Floor)
3:45 pm – 5:30 pm	TUTORIAL	
	T7: Cure Models and Their Applications	Dover Room (3rd Floor)
	SCIENTIFIC PROGRAM	
	91. IMS Medallion Lecture	Grand Ballroom VI (3rd Floor)
	92. Parametric Or Nonparametric, Which Is The Answer?	Grand Ballroom VII (3rd Floor)
	93. Causal Inference in High Dimensional Settings	Grand Ballroom II (3rd Floor)
	94. Advances in Time Series Analysis of Biomedical Signals	Grand Ballroom III (3rd Floor)
	95. Frontiers in Statistical Genetics for Complex Trait Association	Grand Ballroom V (3rd Floor)
	96. Functional Data Approaches to Neurological and Mental Disease	Harborside Room A (4th Floor)

Tuesday, Marc	h 18 (continued)	
	97. Modeling Neurological Diseases With Imaging Data	Harborside Room B (4th Floor)
	98. Making Sense of Sensors: Statistical Methods for Wearable Computing	Grand Ballroom I (3rd Floor)
	99. Contributed Papers: Survival Analysis	Grand Ballroom IV (3rd Floor)
	100. Contributed Papers: Personalized Medicine	Grand Ballroom VIII (3rd Floor)
	101. Contributed Papers: Spatial Temporal Models	Grand Ballroom IX (3rd Floor)
	102. Contributed Papers: Statistical Methods in Cancer Applications	Grand Ballroom X (3rd Floor)
	103. Contributed Papers: Diagnostic and Screening Tests	Atlantic Room (3rd Floor)
	104. Contributed Papers: Statistical Methods for Biomarker Discovery	Bristol Room (3rd Floor)
5:30 pm – 6:30 pm	ENAR BUSINESS MEETING (Open to All ENAR Members)	Bristol Room (3rd Floor)

Tuesday Night Event

at the Baltimore Aquarium (We will walk as a group to the aquarium)

6:30 pm – 10:00 pm

Please meet PROMPTLY at 6:15 pm in the hotel lobby

Wednesday, M	arch 19	
7:30 am – 12:00 pm	Speaker Ready Room	Boardroom (3rd Floor)
7:30 am – 9:00 am	PLANNING COMMITTEE MEETING (by Invitation Only)	James Room (4th Floor)
8:00 am – 12:30 pm	Conference Registration	Grand Ballroom Registration (3rd Floor)
8:00 am – 12:00 pm	Exhibits Open	Grand Ballroom Foyer (3rd Floor)
8:30 am – 10:15 am	SCIENTIFIC PROGRAM	
	105. Modern Survival Analysis in Observational Studies	Grand Ballroom IX (3rd Floor)
	106. Recent Development on Personalized Medicine	Grand Ballroom II (3rd Floor)
	107. Causal Inference in the Assessment of Surrogate Markers	Grand Ballroom III (3rd Floor)
	108. New Developments in Multiple Comparisons Procedures and Variable Selection	Grand Ballroom VIII (3rd Floor)
	109. Spatial Models and Dynamics Applied to Environmental Sciences and Public Health	Grand Ballroom V (3rd Floor)
	110. Advances in Longitudinal studies for Predicting Clinical Outcomes	Grand Ballroom VI (3rd Floor)
	111. Contributed Papers: New Developments in Education, Consulting, and Health Policy	Atlantic Room (3rd Floor)
	112. Contributed Papers: Latest Advances in Functional and Imaging Data Analysis	Grand Ballroom I (3rd Floor)
	113. Contributed Papers: Bayesian Methods	Grand Ballroom IV (3rd Floor)
	114. Contributed Papers: Multivariate Survival Analysis	Grand Ballroom VII (3rd Floor)
	115. Contributed Papers: Statistical Analysis in the Presence of Missing Data	Grand Ballroom X (3rd Floor)
	116. Contributed Papers: Tools for Longitudinal Data Analysis	Bristol Room (3rd Floor)
	117. Contributed Papers: Analysis of Data from Clinical Trials	Chasseur Room (3rd Floor)

	_	
Wednesday, M	arch 19 (continued)	
10:15 am – 10:30 am	Refreshment Break with Our Exhibitors	Grand Ballroom Foyer (3rd Floor)
10:30 am – 12:15 pm	SCIENTIFIC PROGRAM	
	118. Human Health and Environmental Statistics at the U.S. EPA's Office of Research and Development	Grand Ballroom V (3rd Floor)
	119. Power Analysis for Mixed Models: Where We Stand	Grand Ballroom III (3rd Floor)
	120. New Developments in Estimating Causal Effects of Time-varying Treatments	Grand Ballroom II (3rd Floor)
	121. Inside the Biostatistical Collaborative Process	Grand Ballroom VI (3rd Floor)
	122. Contributed Papers: Non-Parametric Methods	Atlantic Room (3rd Floor)
	123. Contributed Papers: Variable Subset Selection	Chasseur Room (3rd Floor)
	124. Contributed Papers: High Dimensional Data in Genetics and Genomics	Grand Ballroom VIII (3rd Floor)
	125. Contributed Papers: Tools for Survival Analysis	Grand Ballroom IV (3rd Floor)
	126. Contributed Papers: Meta-Analysis	Grand Ballroom I (3rd Floor)
	127. Contributed Papers: Statistical Methods for Handling Missing Data	Grand Ballroom X (3rd Floor)
	128. Contributed Papers: Longitudinal Data Analysis	Bristol Room (3rd Floor)
	129. Contributed Papers: Prediction and Prognostic Modeling	Grand Ballroom VII (3rd Floor)
	130. Contributed Papers: New Methods for GWAS	Grand Ballroom IX (3rd Floor)

Sunday, March 16

8:00 - 11:00 pm

POSTER PRESENTATIONS

Grand Ballroom (3rd Floor)

1. INVITED POSTER SESSION

Sponsor: ENAR

1A. SuBLIME and OASIS for Multiple Sclerosis Lesion Segmentation in Structural MRI

Elizabeth M. Sweeney*, Johns Hopkins Bloomberg School of Public Health

Russell T. Shinohara, University of Pennsylvania **Ciprian M. Crainiceanu**, Johns Hopkins Bloomberg School of Public Health

1B. Elastic Statistical Shape Analysis of 3D Objects using Square Root Normal Fields

Sebastian Kurtek*, The Ohio State University

1C. Epidemiological Models for Browser-Based Malware

Natallia Katenka*, University of Rhode Island Eric Kolaczyk and Mark Crovella, Boston University Tom Britton, Stockholm University

1D. Meta-analysis of Rare Variants Based on Single-variant Statistics

Yijuan Hu*, Emory University
Sonja I. Berndt, National Cancer Institute,
National Institutes of Health

Stefan Gustafsson and **Andrea Ganna**, Uppsala University Hospital

Joel Hirschhorn, Boston Children's Hospital

Kari E. North, University of North Carolina, Chapel Hill **Erik Ingelsson**, Uppsala University Hospital

Danyu Lin, University of North Carolina, Chapel Hill

1E. Spatial Quantile Regression for Neuroimaging Data

Linglong Kong*, University of Alberta **Hongtu Zhu**, University of North Carolina, Chapel Hill

1F. Enhancements for Model-bury Justering of Array-based DNA Methania

Andres Houser State University

Carmen J. I. C. Christensen, Dartmouth

College

1G. Disease Surveillance using Dynamic Screening System

Peihua Qiu*, University of Florida

1H. Heat Kernel Wavelets on Manifolds and its Application to Brain Imaging

Moo K. Chung*, University of Wisconsin, Madison

11. Data Visualizations Should be More Interactive

Karl W. Broman*, University of Wisconsin, Madison

1J. Introducing the Evolving Evolutionary Spectrum, with Applications to a Learning Association Study

Mark Fiecas*, University of Warwick

1K. Improving Rare Variant Association Test with Prior Information

Xin He* and Li Liu, Carnegie Mellon University
Bernie Devlin, University of Pittsburgh School of Medicine
Kathryn Roeder, Carnegie Mellon University

2. POSTERS: CLINICAL TRIALS AND STUDY DESIGN

Sponsor: ENAR

2A. A New Statistical Test of Heterogeneity in Treatment Response

Hongbo Lin* and **Changyu Shen**, Indiana University, Indianapolis

2B. Comparing Methods of Tuning Adaptively Randomized Trials

John Cook, Yining Du* and **Jack Lee,** University of Texas MD Anderson Cancer Center

2C. Multi-regional Issues in Equivalence Assessment of Test and References

Yi Tsong*, U.S. Food and Drug Administration

2D. Statistical Methods for Analyzing Count Data — A Case Study on Adverse Event Data from Vaccine Trials Qin Jiang*, Pfizer Inc.

2E. An Alternate Study Design Approach for Multilevel Counts Subject to Overdispersion, with Illustrations Reflective of a Motivating Cluster-randomized Community Trial

Kenneth J. Wilkins*, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health and Uniformed Services University of the Health Sciences **Shweta Padmanaban**, Georgetown University **Stephanie M. Rodriguez**, Uniformed Services University of the Health Sciences

2 F. Leveraging Baseline Variables to Improve Estimators of the Average Treatment Effect in Randomized Trials

Elizabeth A. Colantuoni* and **Michael Rosenblum**, Johns Hopkins Bloomberg School of Public Health

2G. Identifying Comparable Populations using Entropy Matching: The Comparison of Drug Effectiveness between Clinical Trials and EMRs

Haoda Fu, Eli Lilly and Company **Jin Zhou***, University of Arizona

2H. Re-estimating Sample Size in a Randomized Clinical Trial using Participant Compliance Data

Peter D. Merrill* and **Leslie A. McClure**, University of Alabama, Birmingham

21. Variable Group Sizes in Cluster Randomized Trials Reduces Power

Stephen A. Lauer* and **Nicholas G. Reich**, University of Massachusetts, Amherst

Ken P. Kleinman, Harvard Medical School and Harvard Pilgrim Health Care Institute

2J. CoGaussian Statistical Model for Right Skewed Data

Govind Mudholkar and **Ziji Yu***, University of Rochester **Saria Awadalla**, University of Illinois, Chicago

2K. Use of Historical Data in Clinical Trials

Kert Viele*, Berry Consultants

3. POSTERS: BAYESIAN METHODS

and Quantile Regression

Sponsor: ENAR

3A. A Bayesian Approach to ROC Curve Estimation using Conditional Means Priors

Jack S. Knorr* and John W. Seaman, Baylor University

3B. Benchmark Dose Model Averaging in Toxicology Otis R. Evans*, University of North Carolina, Wilmington

3C. Dirichlet Process Mixture Extension Model to
Accommodate Complex Sample Designs for Linear

Xi Xia* and Michael Elliott, University of Michigan

3D. On Bayesian Model Selection for Robust Likelihood-free Methods based on Moment Conditions

Cheng Li* and Wenxin Jiang, Northwestern University

3E. Robustness of Multilevel Item Response Theory Model to Outliers using Normal/Independent Distribution on both Random Effects and Outcomes Geng Chen* and Sheng Luo, University of Texas School of Public Health

3 F. Bayesian Sample Size Determination for Informative Hypotheses

Kristen M. Tecson* and John W. Seaman, Baylor University

3G. Block Total Response Designs: A Bayesian Approach

Michelle S. Marcovitz*, Baylor University Damaraju Raghavarao, Temple University John W. Seaman, Baylor University

3H. Priors and Sample Size Determination for Hurdle Models

Joyce Cheng*, **John W. Seaman** and **David Kahle**, Baylor University

31. Bayesian Models for Facility-level Adverse Medical Device Event Rates among Hospitalized Children

Laura A. Hatfield* and Vanessa Azzone,

Harvard Medical School

Sharon-Lise T. Normand, Harvard Medical School and Harvard School of Public Health

3J. Group Comparison of Pulsatile Hormone Times Series

TingTing Lu* and **Timothy D. Johnson**, University of Michigan

3K. A Bayesian Approach to Detecting Changes in the Visual System

Raymond G. Hoffmann* and **Edgar A. Deyoe**, Medical College of Wisconsin

3L. A Comparison of MCMC and Variational Bayes Algorithms for 3D Log-Gaussian Cox Processes

Ming Teng*, University of Michigan
Farouk S. Nathoo, University of Victoria
Timothy D. Johnson, University of Michigan

3M. A Bayesian Hierarchical Model for Estimating HIV Testing Hazard

Qian An* and Jian Kang, Emory University

3N. Bayesian Inference of the Asymmetric Laplace Distribution with Partial Information Shiyi Tu*, Min Wang and Xiaoqian Sun, Clemson University

3O. An Efficient Bayesian Sampling Approach for Continuous Bayesian Network Structure Learning Shengtong Han* and Hongmei Zhang,

University of Memphis

3P. Two-sample Empirical Likelihood based Tests for Mean: From Frequentists to Bayesian Type Techniques with Applications to Case-control Studies

Ge Tao* and **Albert Vexler**, State University of New York at Buffalo

3Q. Bayes Regularized Graphical Model Estimation in High Dimensions

Suprateek Kundu* and Bani Mallick,
Texas A&M University
Amin Momin and Veera Baladandayuthapani,
University of Texas MD Anderson Cancer Research Center

4. POSTERS: STATISTICAL GENETICS AND GENOMICS

Sponsor: ENAR

4A. LDA Topic Model of an Unknown Number of Topics via MCMC

Zhe Chen* and Hani Doss, University of Florida

4B. Controlling the Local False Discovery Rate in the Adaptive Lasso

Joshua N. Sampson* and Nilanjan Chatterjee, National Cancer Institute, National Institutes of Health Raymond Carroll, Texas A&M University Samuel Muller, University of Sydney

4C. Integrated Analysis of MicroRNA and Messenger RNA Expression Profiles of Essential Thrombocytosis

Erya Huang*, Wei Zhu, Dmitri V. Gnatenko and **Wadie F. Bahou**, Stony Brook University

4D. The Power Comparison of the Haplotype-based Collapsing Tests and the Variant-based Collapsing Tests for Detecting Rare Variants in Pedigrees

Wei Guo* and **Yin Yao Shugart**, National Institute of Mental Health, National Institutes of Health

4E. Functional Normalization (FunNorm): A Better Alternative to Quantile Normalization for Methylation Data

Jean-Philippe Fortin*, Johns Hopkins University
Aurélie Labbe, McGill University
Mathieu Lemire, University of Toronto
Brent W. Zanke, Ottawa Hospital Research Institute
Thomas J. Hudson, University of Toronto
Elana J. Fertig, Sidney Kimmel Cancer Center at Johns
Hopkins University

Celia M.T. Greenwood, McGill University **Kasper D. Hansen**, Johns Hopkins University

4F. MetaOC: Meta-analysis with One-sided Correction to Detect Differentially Expressed Genes with Concordant Direction

Xingbin Wang*, **M. Ilyas Kamboh** and **George C. Tseng**, University of Pittsburgh

4G. Normalization of DNA Methylation Microarrays using Technical Covariates

Paul T. Manser* and **Mark Reimers**, Virginia Commonwealth University

4H. Sequence Kernel Association Test for Quantitative Traits in Twin Samples

Kai Xia*, Wonil Chung, Zhaoyu Yin, Rebecca C. Santelli and Fei Zou, University of North Carolina, Chapel Hill

41. An Alternative Approach to Model RNA-seq Data with GLMM

Han Sun*, Cleveland Clinic
Jiayang Sun, Case Western Reserve University

4J. Classifying Family Relationships using Dense SNP Data and Putative Pedigree Information

Zhen Zeng* and **Eleanor Feingold**, University of Pittsburgh

4K. Identifying Multiple-Role Genes Dynamic in Distinct Environments

Yaqun Wang*, Ningtao Wang, Han Hao and Rongling Wu, The Pennsylvania State University

4L. ChIP-seq Meta-Caller: An Assembly Method to Combine Multiple ChIP-seq Peak Callers to Identify and Reprioritize the Peaks

Rui Chen*, University of Pittsburgh Qunhua Li, The Pennsylvania State University George C. Tseng, University of Pittsburgh

4M. Fast Annotation-Agnostic Differential Expression Analysis

Leonardo Collado-Torres*, Johns Hopkins University Bloomberg School of Public Health and Maltz Research Laboratories

Andrew E. Jaffe, Maltz Research Laboratories **Jeffrey T. Leek**, Johns Hopkins University Bloomberg School of Public Health

4N. Sample Size and Power Determination for Association Tests in Case-parent Trio Studies

Holger Schwender*, Heinrich Heine University Duesseldorf Christoph Neumann, TU Dortmund University Margaret A. Taub, Samuel G. Younkin, Terri H. Beaty and Ingo Ruczinski, Johns Hopkins University

40. A Hierarchical Bayesian Approach to Detect Differential Methylation in Both Mean and Variance for Next Generation Sequencing

Shuang Li*, Varghese George, Duchwan Ryu, Xiaoling Wang, Shaoyong Su and Huidong Shi, Georgia Regents University Robert H. Podolsky, Wayne State University Hongyan Xu, Georgia Regents University

4P. Bayesian Mixture Models for Complex Copy Number Polymorphisms Inferred from Genotyping Arrays

Stephen Cristiano*, **Robert B. Scharpf** and **Lynn Mireless**, Johns Hopkins University

4Q. Multiple Phenotype Analysis for Genome-Wide Association Studies

Shelley Liu*, Harvard School of Public Health **Sheng Feng**, Biogen-Idec

4R. EBSeq-HMM: An Empirical Bayes Hidden Markov Model for Ordered RNA-seq Experiments

Ning Leng*, University of Wisconsin, Madison Brian E. Mcintosh, Morgridge Institute for Research Yuan Li, University of Wisconsin, Madison Bao K. Nguyen, Bret Duffin, Shulan Tian, James A. Thomson and Ron Stewart, Morgridge Institute for Personsish

Christina Kendziorski, University of Wisconsin, Madison

5. POSTERS: PREDICTION, PROGNOSTICS, DIAGNOSTIC TESTING

Sponsor: ENAR

5A. Joint Confidence Region Estimation for Area Under ROC Curve and Youden Index

Jingjing Yin* and Lili Tian, University at Buffalo

5B. Building Risk Models with Calibrated Margins

Paige Maas*, National Cancer Institute, National Institutes of Health

Raymond Carroll, Texas A&M University **Nilanjan Chatterjee**, National Cancer Institute, National Institutes of Health

5C. Meta-TSP: A Meta-analysis Framework of Top Scoring Pair Algorithm to Combine Multiple Transcriptomic Studies in Inter-study Prediction Analysis

SungHwan Kim* and **George C. Tseng**, University of Pittsburgh

5D. A Modified Tree-Based Method for Personalized Medicine Decisions

Wan-Min Tsai*, Heping Zhang, Stephanie O'Malley and Ralitza Gueorguieva, Yale University

5E. A Simple Method for Evaluating Within-Sample Prognostic Balance Achieved by Published Comorbidity Summary Measures

Brian L. Egleston*, Robert G. Uzzo, J. Robert Beck and **Yu-Ning Wong**, Fox Chase Cancer Center, Temple University Health System

5F. Effect Size Measures for Functional Modifiers of Treatment Response

Adam Ciarleglio*, New York University School of Medicine

5G. Power Calculations for Prognostic Biomarker Validation Studies with Time to Event Data

Marshall D. Brown* and Yingye Zheng, Fred Hutchinson Cancer Research Center Tianxi Cai, Harvard School of Public Health

5H. Generalized Incremental Forward Stagewise Ordinal Models: Application Predicting Stage of Alzheimer's Disease

Kellie J. Archer* and **Jiayi Hou**, Virginia Commonwealth University

6. POSTERS: SURVIVAL ANALYSIS

Sponsor: ENAR

6A. Non-parametric Confidence Bands for Survival Function using Martingale Method

Eun-Joo Lee*, Millikin University

6B. On the Estimators and Tests for the Semiparametric Hazards Regression Model

Seung-Hwan Lee*, Illinois Wesleyan University

6C. Regression Analysis of Bivariate Current Status Data with the Proportional Hazards Model and Bernstein Polynomials

Tao Hu, Capital Normal University

Qingning Zhou* and **Jianguo Sun**, University of Missouri, Columbia

6D. Joint Structure Selection and Estimation in the Time-varying Coefficient Cox Model

Wei Xiao* and **Wenbin Lu**, North Carolina State University **Hao Helen Zhang**, University of Arizona

6E. Weighted Log-rank Tests for 'Flipped-Data' Survival Analysis of Data with Non-Detects

Eric R. Siegel*, Songthip T. Ounpraseuth and **Ralph L. Kodell**, University of Arkansas for Medical Sciences

6F. A Frailty Approach for Survival Analysis with Error-prone Covariate

Sehee Kim* and Yi Li, University of Michigan Donna Spiegelman, Harvard School of Public Health

6G. LC-Morph: A Morphological Image Signature for Predicting Lung Cancer Survival

Yuchen Yang*, Fuyong Xing, Hai Su, Chi Wang, Li Chen, Lin Yang and Arnolod Stromberg, University of Kentucky

7. POSTERS: IMAGING, HIGH DIMENSIONAL DATA, BIOMARKERS, AND MICROARRAY

Sponsor: ENAR

7A. On the Distribution of Photon Counts with Censoring in Two-Photon Microscopy

Burcin Simsek* and **Satish Iyengar**, University of Pittsburgh

David Kleinfeld, University of California, San Diego

7B. Bayesian Gaussian Process Regression for High-dimensional Data

Qing He*, Jian Kang and Qi Long, Emory University

7C. Effects of Alcohol use on Brain Networks: A Dynamic Causal Model Study with EEG Data

Benjamin T. Brown*, Lynn Eberly, Steve Malone and **Kathleen Thomas**, University of Minnesota

7D. C.Logic: A Classification Algorithm for Discovering Interactions that Lead to Disease Susceptibility

Sybil L. Nelson*, Bethany Wolf and Viswanathan Ramakrishnan, Medical University of South Carolina

7E. A Direct Approach to False Discovery Rate Regression

Simina M. Boca*, National Cancer Institute, National Institutes of Health Jeffrey T. Leek.

Johns Hopkins Bloomberg School of Public Health

7F. A Study of the Correlation Structure of Microarray Gene Expression Data Based on Mechanistic Modelling of Cell Population Kinetics

Linlin Chen*, Rochester Institute of Technology Lev Klebnov, Charles University Anthony Almudevar and Christoph Proschel, University of Rochester

7G. Making Computerized Adaptive Testing a Diagnostic Tool

Hua-Hua Chang*, University of Illinois, Urbana-Champaign **Ya-Hui Su**, National Chung Cheng University

7H. Missing Value Imputation in High-dimensional Phenomic Data: Imputable or Not? And How?

Serena Liao* and **George C. Tseng**, University of Pittsburgh

71. Age Prediction using Supervised PCA

Valerie J. Watkins* and Yishi Wang, University of North Carolina, Wilmington

7J. Tensor Regression with Applications in Neuroimaging Data Analysis

Xiaoshan Li*, Hua Zhou and Lexin Li, North Carolina State University

7K. Investigating Spatiotemporal Covariance Structures for Modeling Longitudinal Imaging Data

Brandon J. George* and **Inmaculada Aban**, University of Alabama, Birmingham

7L. Nonparametric Regression with Tree-structured Response

Yuan Wang*, University of Texas MD Anderson Cancer Center

J. S. Marron, University of North Carolina, Chapel Hill Haonan Wang, Colorado State University Burcu Aydin, Alim Ladha and Elizabeth Bullitt, University of North Carolina, Chapel Hill

7M. Improving Scan-Rescan Reliability of Resting State fMRI Parcellation

Amanda Mejia*, Johns Hopkins School of Public Health **Mary Beth Nebel** and **Stewart Mostofsky**, Kennedy Krieger Institute

Brian Caffo and **Martin Lindquist**, Johns Hopkins School of Public Health

7N. SGPP: Spatial Gaussian Predictive Process Models for Neuroimaging Data

Jung Won Hyun* and **Yimei Li**, St. Jude Children's Research Hospital

John H. Gilmore, Zhaohua Lu, Martin Styner and **Hongtu Zhu**, University of North Carolina, Chapel Hill

70. Dimension Reduction using Inverse Spline Regression

Kijoeng Nam, U.S. Food and Drug Administration **Paul J. Smith**, University of Maryland, College Park

7P. Interpreting Large Dense (Scary) Linear Models along Predictor Groups

Yuval Benjamini*, Stanford University Julien Mairal, INRIA, Grenoble Bin Yu, University of California, Berkeley

8. POSTERS: ENVIRONMENTAL AND LONGITUDINAL DATA ANALYSIS

Sponsor: ENAR

8A. Accounting for Complex Survey Design in Modeling Temporal Trends of Phthalate Metabolites in the U.S. Population

Min Chen*, Kevin Kransler, Rosemary Zaleski and Hua Qian, ExxonMobil Biomedical Sciences, Inc.

8B. Non-stationary Covariance Functions via Domain Segmentation

Douglas C. Hom*, Timothy D. Johnson and **Veronica J. Berrocal**, University of Michigan

8C. The Effect of Exposure to Air Toxics on Age of Diagnosis and Subtype of Childhood Leukemia
A Joint Modeling Approach

Ting-Yu Chen*, Elaine Symanski and **Wenyaw Chan**, University of Texas School of Public Health

8D. Investigating the Health Risks Associated with Long Term Exposure to Coarse PM

Helen L. Powell* and **Roger D. Peng**,
Johns Hopkins Bloomberg School of Public Health

8E. Functional Data Analysis to Guide a Conditional Likelihood Regression in a Case-Crossover Study Investigating whether Social Characteristics Modify the Health Effects of Air Pollution

Juana M. Herrera*, Joan Staniswalis and **Sara E. Grineski**, University of Texas, El Paso

8F. Dependence Modeling of Spatio-Temporal Weather Extreme Events

Whitney Huang* and Hao Zhang, Purdue University

8G. Identifying the Constellation of Emergency Health Conditions most Sensitive to Extreme Heat

Jennifer Bobb*, Harvard School of Public Health

8H. Statistical Strategies for Constructing
Health Risk Models with Multiple Pollutants
and their Interactions

Zhichao Sun*, Yebin Tao, Shi Li, Kelly K. Ferguson, John D. Meeker, Sung Kyun Park, Stuart A. Batterman and Bhramar Mukherjee, University of Michigan

81. Mixed Effects Models for Investigating
Dietary Regimens Intended to Extend Lifespan
in Caenorhabditis Elegans

Jeffrey Burton*, Robbie Beyl, Jolene Zheng and William D. Johnson, Pennington Biomedical Research Center

8J. Simulation from a known Cox MSM using Standard Parametric Models for the g-formula

Jessica G. Young* and **Eric J. Tchetgen Tchetgen**, Harvard School of Public Health

8K. Reflecting the Orientation of Teeth in Random
Effects Models for Periodontal Outcomes
Rong Xia* and Thomas M. Braun, University of Michigan

8L. A Longitudinal Beta-binomial Model for Over-dispersed Binomial Data

Hongqian Wu* and Ying Zhang, University of Iowa

9. POSTERS: EPIDEMIOLOGY AND CAUSAL INFERENCE

Sponsor: ENAR

9A. Methods of Missing-Data Exploration that Reveal Potential Extrapolation

Victoria Liublinska*, Harvard University

9B. Exploring Mobile Technology to Enhance Birth Outcomes in Rural Mozambique: Pilot Study Results

Manoj T. Rema*, Ike Okosun and **Sheryl Strasser**, Georgia State University

9C. Transformations to the Zero-inflated Negative Binominal Model for Overall Exposure Effects: An Analysis of Blood Lead and Dental Caries in a Complex Survey

D. Leann Long* and **R. Constance Wiener**, West Virginia University

9D. Applying Multiple Imputation using External Calibration to Propensity Score Methods

Yenny G. Webb-Vargas* and **Elizabeth A. Stuart**, Johns Hopkins Bloomberg School of Public Health

9E. Efficient Estimation of Partial Rank-based Correlation with Missing Data

Wei Ding* and Peter X.K Song, University of Michigan

9F. Data Analysis of Contributing Factors for Obesity in Low-Income Neighborhoods

Sujin Kim* and **Rukmana Deden**, Savannah State University

10. POSTERS: NON PARAMETRIC AND NON LINEAR METHODS

Sponsor: ENAR

10A. Comparison of Area Under the Curve and Mixed Effects Models Methodologies for Profile Analysis

Robbie A. Beyl*, Jeffrey Burton and **William Johnson**, Pennington Biomedical Research Center

10B. Inferential Approaches to Relative Risk Regression

Yi Lu* and **Daniel O. Scharfstein**, Johns Hopkins Bloomberg School of Public Health

10C. Fractional Polynomial Regression with Multilevel Data

Paul Kolm*, Daniel Elliot and **Joann Brice**, Christiana Care Health System

Robert Young, Northwestern University

10D. BLUP Estimation in Unbalanced Mixed-Effects Models

Samaradasa Weerahandi, Pfizer Inc.
Peijin Xie, Hershey's Company
Ching-Ray Yu and Kelly H. Zou*, Pfizer Inc.

10E. Flexible Test for Interactions in Smoothing Spline ANOVA Models through the Use of Distance Correlation

Sebastian J. Teran Hidalgo*, Michael Wu and Michael Kosorok, University of North Carolina, Chapel Hill

10F. Optimal Global Test for Functional Linear Regression Models and its Applications

Xiao Wang and Simeng Qu*, Purdue University

10G. Model Tumor Pattern and Compare Treatment Effects using Semiparametric Linear Mixed-Effects Models

Changming Xia*, University of Rochester **Jianrong Wu**, St. Jude Children's Research Hospital **Hua Liang**, The George Washington University

10H. Robust Variance Component Analysis with Applications in Biological Assay Validation

Binbing Yu*, MedImmune, LLC.

101. Oracle Inference for GMM Models

Mihai C. Giurcanu* and Brett D. Presnell, University of Florida

★ = Presenter | **■** = Student Award Winner

10J. Covariate-dependent Functional Inference for the Life-time Circadian Rhythm of Physical Activity

Luo Xiao*, Lei Huang and **Ciprian Crainiceanu**, Johns Hopkins Bloomberg School of Public Health

11. POSTERS: VARIABLE SELECTION, MACHINE LEARNING AND OTHER

Sponsor: ENAR

11A. An Extended Beta Regression Model

Min Yi* and **Nancy Flournoy**, University of Missouri, Columbia

11B. Model-Adjusted Standardization to Account for Unmeasured Cluster-Level Covariates with Complex Survey Data

Zhuangyu Cai* and Babette Brumback, University of Florida

11C. A New Multiple Comparisons with the Best Procedure

Tianshuang Wu* and **Susan Murphy**, University of Michigan

11D. Mixture of D-vine Copulas for Modeling Dependence

Daeyoung Kim, Sungkyunkwan University, Korea **Jong-Min Kim**, University of Minnesota, Morris **Shu-Min Liao**, Amherst College **Yoonsung Jung***, Prairie View A&M University

11E. Ensemble Variable Selection and Estimation (EVE)

Sunyoung Shin*, Yufeng Liu and **Jason Fine**, University of North Carolina, Chapel Hill

11F. Support Vector Classifiers and Missing Data: An Investigation of the Complete-Case Solution and a Proposal of an EM-like Solution

Thomas G. Stewart*, Donglin Zeng and **Michael C. Wu**, University of North Carolina, Chapel Hill

11G. Evaluating Novel Intradialytic Sampling Designs for Individual Pharmacokinetic Analysis using Monte Carlo Simulation

Minchun Zhou*, William Henry Fissell and Matthew Stephen Shotwell, Vanderbilt University

11H. A Study on the Statistical Properties of the European Pharmacopoeia Test for Uniformity of Dosage Units using Large Sample Sizes

Meiyu Shen*, Yi Tsong and **Xiaoyu Dong**, U.S. Food and Drug Administration

111. Variable Selection When Some Predictors are Measured with Error

Guangning Xu* and **Leonard A. Stefanski**, North Carolina State University

11J. Variable Selection for Optimal Treatment Regimes Na Zhang*, Eric Laber and Howard Bondell,

North Carolina State University

11K. Promoting Similarity of Model Sparsity Structures in Integrative Analysis

Yuan Huang* and Runze Li, The Pennsylvania State University Jian Huang, University of Iowa Shuangge Ma, Yale University

Monday, March 17

8:30 am - 10:15 a.m.

12. MASSIVE ONLINE OPEN STATISTICS (MOOS): SHOULD WE BE TEACHING STATISTICS TO 100,000 AT A TIME?

Grand Ballroom I (3rd Floor)

Sponsors: ENAR, ASA Section on Statistical Education, ASA Statistical Learning and Data Mining Section

Organizer: Jeffrey Leek, Johns Hopkins Bloomberg School of Public Health

Chair: Brian Caffo, Johns Hopkins Bloomberg School of Public Health

8:30

MOOCs for Statistics and the Statistics of MOOCs Joseph Blitzstein*, Harvard University

8:55

Can We Teach 100,000 People Data Analysis at a Time?

Jeffrey T. Leek*,

Johns Hopkins Bloomberg School of Public Health

9:20

Statistical Reasoning for the Masses

John McGready*, Johns Hopkins Bloomberg School of Public Health

9:45

Massive Online Open Statistics (MOOS): Should We be Teaching Statistics to 100,000 at a Time? Rebecca Nugent*, Carnegie Mellon University

10:10

Floor Discussion

13. COUNCIL FOR EMERGING AND NEW STATISTICIANS (CENS) INVITED SESSION: SHOULD I DO A POSTDOC?

Grand Ballroom V (3rd Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section

Organizer: Tapan Mehta, University of Alabama, Birmingham

Chair: Naomi Brownstein, Florida State University

8:30

My Experiences as a Postdoc in Biostatistics

Joshua Warren*, University of North Carolina, Chapel Hill

9:00

Is Post-Doctoral Fellowship Key to Academic Success?

Hemant K. Tiwari*, University of Alabama, Birmingham

9:30

Should I do a Post-Doctoral Fellowship? The NICHD Experience

Paul S. Albert*, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

10:10

Floor Discussion

14. ADAPTIVE RANDOMIZED TRIAL DESIGNS AND IMPROVED ANALYSIS METHODS TO LEARN WHICH SUBPOPULATIONS BENEFIT FROM WHICH TREATMENTS

Grand Ballroom II (3rd Floor)

Sponsors: IMS, ASA Biometrics Section, ASA Biopharmaceutical Section

Organizer: Michael Rosenblum, Johns Hopkins Bloomberg School of Public Health

Chair: Yi (Yvonne) Huang, Johns Hopkins Bloomberg School of Public Health

8:30

Impacts of Predictive Genomic Classifier Performance on Subpopulation-Specific Treatment Effects Assessment

Sue-Jane Wang*, U.S. Food and Drug Administration **Ming-Chung Li**, National Cancer Institute, National Institutes of Health

8:55

SHINE Shadow: A Bayesian Adaptive Trial vs. a Group Sequential Trial in Stroke

Jason T. Connor* and Kristine R. Broglio,

Berry Consultants

Valerie L. Durkalski, Medical University of South Carolina

Adaptive Enrichment Designs for Clinical Trials

Noah Simon*, University of Washington **Richard Simon**, National Cancer Institute, National Institutes of Health

9:45

Constructing Confidence Sets for the Optimal Regime

Sherri Rose*, Harvard University
Tuo Zhao, Johns Hopkins University
Han Liu, Princeton University
Michael Rosenblum, Johns Hopkins University

10:10

Floor Discussion

15. STATISTICAL METHODS FOR COMPLEX STRUCTURED BIOMEDICAL OBJECT DATA

Grand Ballroom VI (3rd Floor)

Sponsors: ENAR, ASA Statistical Learning and Data Mining Section

Organizer: Veera Baladandayuthapani, University of Texas MD Anderson Cancer Center

Chair: Veera Baladandayuthapani, University of Texas MD Anderson Cancer Center

8:30

Object Oriented Data Analysis: Backwards PCA

J. S. Marron*, University of North Carolina, Chapel Hill

8:55

Additive and Interaction Models for Nonparametric Functional and Object Regression, with Application to Ophthalmological Multi-level Functional Data on Spherical Domains

Jeffrey S. Morris* and **Veera Baladandayuthapani**, University of Texas MD Anderson Cancer Center **Massimo Fazio**, University of Alabama, Birmingham

9:20

On Synergy Between Statistical Shape Analysis (SSA) and Functional Data Analysis (FDA)

Anuj Srivastava*, Florida State University Sebastian Kurtek, The Ohio State University Eric Klassen, Florida State University Jingyong Su, Texas Tech University

9:45

Bayesian Spatial Functional Models for High-dimensional Genomics Data

Veerabhadran Baladandayuthapani*, Lin Zhang, Jeffrey Morris and Keith Baggerly, University of Texas MD Anderson Cancer Center

10:10

Floor Discussion

★ = Presenter | **■** = Student Award Winner

16. MULTIVARIATE ANALYSIS IN HIGH DIMENSIONS

Grand Ballroom III (3rd Floor)

Sponsor: IMS

Organizer: Adam Rothman, University of Minnesota

Chair: Mark Fiecas, University of Warwick, UK

8:30

Laplacian Shrinkage for Estimation of Inverse Covariance Matrices from Heterogenous Samples

Takumi Saegusa and **Ali Shojaie***, University of Washington

8:55

Joint Mean-Covariance Models for Incomplete Multivariate Longitudinal Data

Mohsen Pourahmadi*, Texas A&M University

9:20

Prediction in Abundant High-dimensional Linear Regression

Dennis Cook*, University of Minnesota **Liliana Forzani**, Instituto de Matem´atica Aplicada del Litoral and Facultad de Ingenier´ıa Qu´ımica CONICET and UNL

Adam J. Rothman, University of Minnesota

9:45

Properties of Optimizations used in Penalized Gaussian Likelihood Inverse Covariance Matrix Estimation

Adam J. Rothman*, University of Minnesota **Liliana Forzani**, Instituto de Matem´atica Aplicada del Litoral and Facultad de Ingenier´ıa Qu´mica CONICET and UNL

10:10

Floor Discussion

17. RECENT ADVANCES IN LIFETIME DATA ANALYSIS

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Organizer: Mei-Ling Ting Lee, University of Maryland, College Park

Chair: Xin He, University of Maryland, College Park

8:30

Bayesian Threshold Regression for Informatively Censored Current Status Data

Tao Xiao, University of Maryland, College Park and The Ohio State University

Michael L. Pennell*, The Ohio State University

Semiparametric Estimation for the Additive Hazards Model with Left-truncated and Right-censored Data

Chiung-Yu Huang*, Johns Hopkins University
Jing Qin, National Institute of Allergy and Infectious
Diseases. National Institutes of Health

9:20

Semiparametric Inference on the Absolute Risk Reduction and the Restricted Mean Survival Difference

Song Yang*, National Heart, Lung, and Blood Institute, National Institutes of Health

9:45

Evaluating Calibration of Risk Prediction Models Ruth Pfeiffer*, National Cancer Institute, National Institutes of Health

10:10

Floor Discussion

18. CONTRIBUTED PAPERS: EPIDEMIOLOGIC METHODS

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Emily Mitchell, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

8:30

Modeling Epidemiological Features of Disease Outbreaks

Manasi Sheth-Chandra*, Booz Allen Hamilton N. Rao Chaganty, Old Dominion University

8:45

A Stochastic Model for Explicit Estimation of Effect Modification in Finite Sample

Xiaoshan Wang* and Jacqueline Starr, Forsyth Institute

9:00

Modeling the Effects of Climate Change and Air Quality on Asthma, Accounting for Uncertainty Stacey E. Alexeeff*, Stephan R. Sain and Doug Nychka, National Center for Atmospheric Research

9:15

One Novel Approach to Handle Random Measurement Error using Hidden Markov Models Lola Luo*, Dylan Small and Jason A. Roy, University of Pennsylvania

9:30

Quantifying Circadian Trajectory of Fatigability using the Proportional Intensity Model

Jiawei Bai*, Jennifer Schrack and **Mei-Cheng Wang**, Johns Hopkins University

Luigi Ferrucci, National Institute of Aging, National Institutes of Health

Ciprian M. Crainiceanu, Johns Hopkins University

9:45

A Comparison of Methods for Biomarker Associations with Endogenous Treatment

Andrew J. Spieker*, Joseph AC Delaney and Robyn L. McClelland, University of Washington

10:00

Modeling Temporal Patterns in Exposure/Response Relationships with Change Points, with an Application to Incident Obstructive Airway Disease in Firefighters Exposed to the World Trade Center Rescue/Recovery Effort

Charles B. Hall*, Albert Einstein College of Medicine of Yeshiva University

Michelle Glaser, Mayris Webber, Xiaoxue Liu and Rachel Zeig-Owens, Montefiore Medical Center David Prezant, Fire Department of the City of New York

19. CONTRIBUTED PAPERS: COMPUTATIONAL METHODS AND IMPLEMENTATION

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Ruiwen Zhang, SAS Inc.

8:30

Performance of Shannon's Maximum Entropy Distribution under Some Restrictions Sinan Saracli* and Hatice Cicek, Afyon Kocatepe University

8:45

Propensity Score Matching with Survival Outcomes: Critical Considerations in the Choice of the Caliper Size

Adin-Cristian Andrei*, Zhi Li, S. Chris Malaisrie, Edwin McGee, Jane Kruse and Patrick M. McCarthy, Bluhm Cardiovascular Institute, Northwestern University

9:00

Model Free Variable Rank using Randomized Decision Tree, an Ensemble of Trees

Bong-Jin Choi* and **Chris P. Tsokos**, University of South Florida

Optimal Computational and Statistical Rates of Convergence for Sparse Nonconvex Learning Problems

Zhaoran Wang* and **Han Liu**, Princeton University **Tong Zhang**, Rutgers University

9:30

A Modified EM Algorithm for Regression Analysis of Data with Non-ignorable Non-response

Yang Zhang* and Gong Tang, University of Pittsburgh

9:45

A Computationally Fast and Asymptotically Efficient Approach for the Broken-stick Model Ritabrata Das*, Moulinath Banerjee and Bin Nan,

University of Michigan

20. CONTRIBUTED PAPERS: NON-PARAMETRIC AND SEMIPARAMETRIC METHODS IN FUNCTIONAL DATA ANALYSIS

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Adam Ciarleglio, NYU School of Medicine

8:30

Restricted Likelihood Ratio Tests for Linearity in Scalar-on-Function Regression

Mathew W. McLean*, Texas A&M University Giles Hooker and David Ruppert, Cornell University

8:45

Incorporating Covariates in Skewed Functional Data Models

Meng Li*, Ana-Maria Staicu and Howard D. Bondell, North Carolina State University

9:00

Simultaneous Inference for Repeated Functional Data

Guanqun Cao*, Auburn University **Lily Wang**, University of Georgia

9:15

Generalized Functional Concurrent Model

Janet S. Kim*, Arnab Maity and Ana-Maria Staicu, North Carolina State University

9:30

Variable-Domain Functional Regression

Jonathan E. Gellar ■ and Elizabeth Colantuoni,
Johns Hopkins Bloomberg School of Public Health
Dale M. Needham, Johns Hopkins School of Medicine
Ciprian M. Crainiceanu, Johns Hopkins Bloomberg
School of Public Health

9:45

Interaction Models for Functional Data

Joseph Usset*, Ana-Maria Staicu and **Arnab Maity**, North Carolina State University

10:00

A Novel Statistical Method based on Dynamic Models for Classification

Lerong Li* and **Momiao Xiong**, University of Texas School of Public Health, Houston

21. CONTRIBUTED PAPERS: STATISTICAL METHODS FOR MICROARRAY AND BIOMARKER DATA

Grand Ballroom VII (3rd Floor)

Sponsor: ENAR

Chair: Danping Liu, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

8:30

Modeling qRT-PCR Dynamics with Application to Cancer Biomarkers Quantification

Inna Chervoneva*, Thomas Jefferson University

8:45

Evaluation Drug Efficacy in the Presence of the Imperfect Companion Diagnostic Device Meijuan Li*, U.S. Food and Drug Administration

9:00

Joint Graphical Models for Relational Structures in Multi-Dimensional Phenotypic Data

Vivian H. Shih*, Novartis Pharmaceuticals

Catherine A. Sugar, University of California, Los Angeles

9:15

Sample Size Methods for Training Classifiers
Developed from Regularized Logistic Regression
Sandra Safo*, Xiao Song and Kevin K. Dobbin,
University of Georgia

9:30

Bilaterally Contaminated Normal Model with Nuisance Parameter and Its Applications

Qian Fan*, University of Kentucky
Hongying Dai, Children's Mercy Hospital
Richard J. Charnigo, University of Kentucky

9:45

Correlation Coefficient Inference for Left-Censored Biomarker Data with Known Detection Limits

Courtney E. McCracken, Emory University Stephen W. Looney*, Georgia Regents University

10:00

A Semi-parametric Model for Time-dependent Predictive Accuracy Curves of Biomarkers

Weining Shen*, Jing Ning and Ying Yuan,

University of Texas MD Anderson Cancer Center

22. CONTRIBUTED PAPERS: MACHINE LEARNING

Grand Ballroom IX (3rd Floor)

Sponsor: ENAR

Chair: Qing He, Emory University

8:30

Joint Estimation of Multiple Graphical Models from High Dimensional Dependent Data

Huitong Qiu ■ and Fang Han, Johns Hopkins University Han Liu, Princeton University Brian S. Caffo, Johns Hopkins University

8:45

MBACT - Multiclass Bayesian Additive Classification Trees

Bereket P. Kindo*, Hao Wang and **Edsel A. Pena**, University of South Carolina

9:00

Random Forest Importance Scores:
Significance Testing and Conditional Importance
Eric Bair* and Lira Pi, University of North Carolina,
Chapel Hill

9:15

Large-Margin Classifier Selection via Decision Boundary Instability

Wei Sun* and Guang Cheng, Purdue University
Yufeng Liu, University of North Carolina, Chapel Hill

9:30

Bias Correction for Selecting the Minimal-error Classifier from Many Machine Learning Models Ying Ding*, Shaowu Tang, Ge Liao, Jia Jia, Yan Lin and George C. Tseng, University of Pittsburgh

9:45

Ensemble Learning of Inverse Probability Weights for Marginal Structural Modeling in Large Observational Datasets

Susan Gruber* and **Roger W. Logan**, Harvard School of Public Health

Inmaculada Jarrin and **Susana Monge**, Instituto de Salud Carlos III, Madrid, Spain

Miguel Hernan, Harvard School of Public Health

10:00

Ordinal Logic Forest: Discovering Interactions Among Binary Predictors for Classifying Ordinal Responses

Bethany J. Wolf* and **Elizabeth G. Hill**, Medical University of South Carolina

Elizabeth H. Slate, Florida State University

23. CONTRIBUTED PAPERS: MULTIPLE TESTING

Chasseur Ballroom (3rd Floor)

Sponsor: ENAR

Chair: Simina M. Boca, National Cancer Institute, National Institutes of Health

8:30

Sizing Clinical Trials that Compare Two Interventions using Two Time-to-Event Outcomes

Yuki Ando, Pharmaceuticals and Medical Devices Agency Toshimitsu Hamasaki*, Osaka University Graduate School of Medicine and National Cerebral and Cardiovascular Center Tomoyuki Sugimoto, Hirosaki University Graduate School of Science & Technology

Scott R. Evans, Harvard School of Public Health **Yuko Ohno**, Osaka University Graduate School of Medicine

8:45

Multiple Simultaneous Tests for Noninferiority and Superiority: A Graphical Approach

Heng Li and **Vandana Mukhi***, U.S. Food and Drug Administration

9:00

Multiple Testing that Considers Assumptions and Network

Demba Fofana*, E. O. George and **Dale Bowman**, University of Memphis

9:15

Testing the Disjunction Hypothesis using Voronoi Diagrams, with Applications to Genetics

Daisy Phillips* and **Debashis Ghosh**, The Pennsylvania State University

9:30

A Class of Improved Hybrid Hochberg-Hommel Type Step-Up Multiple Test Procedures

Jiangtao Gou* and **Ajit C. Tamhane**, Northwestern University

Dong Xi, Novartis Pharmaceuticals Corporation **Dror Rom**, Prosoft Software, Inc.

9:45

Identifying Multiple Regulation Across a Diverse Set of Outcomes

Denis M. Agniel* and Tianxi Cai, Harvard University

10:00

Dorfman Testing with Correlated Responses

Elena K. Bordonali*, Michael G. Hudgens and **Bahjat F. Qaqish**, University of North Carolina, Chapel Hill

24. CONTRIBUTED PAPERS: METHODS FOR STATISTICAL GENETICS

Grand Ballroom VIII (3rd Floor)

Sponsor: ENAR

Chair: Peng Wei, University of Texas School of Public Health

8:30

Fitting Generalized Linear Mixed Models to Family Data in Genetic Association Studies

Tao Wang*, Peng He and **Kwang Woo Ahn**, Medical College of Wisconsin

Xujing Wang, University of Alabama, Birmingham **Soumitra Ghosh**, GlaxoSmithKline

Purushottam Laud, Medical College of Wisconsin

8:45

Kernel Methods for Regression Analysis of Microbiome Compositional Data

Jun Chen*, Harvard School of Public Health **Hongzhe Li**, University of Pennsylvania

9:00

Latent Class Quantitative Trait Loci (QTL) Mapping

Shuyun Ye*, Xiaomao Li, Mark Keller, Alan Attie and Christina Kendziorski, University of Wisconsin, Madison

9:15

Using Gene Expression to Improve the Power of Genome-Wide Association Analysis

Yen-Yi Ho* and Emily C. Baechler, University of Minnesota Ward Ortmann, Timothy W. Behrens, Robert R. Graham and Tushar R. Bhangale, Genentech, Inc. Wei Pan, University of Minnesota

9:30

Extending Linear Predictors to Impute Genotypes in Pedigrees

Wenan Chen* and Daniel J. Schaid, Mayo Clinic

9:45

Inferring Rare Disease Risk Variants based on Exact Probabilities of Sharing by Multiple Affected Relatives

Alexandre Bureau*, Institut universitaire en santé mentale de Québec

Samuel Younkin, University of Wisconsin, Madison **Margaret M. Parker**, Johns Hopkins Bloomberg School of Public Health

Joan E. Bailey-Wilson, National Human Genome Research Institute, National Institutes of Health

Mary L. Marazita, University of Pittsburgh

Jeffrey C. Murray, University of Iowa

Elisabeth Mangold, University of Bonn **Hasan Albacha-Hejazi**, Dr. Hejazi Clinic

Terri H. Beaty and Ingo Ruczinski, Johns Hopkins

Bloomberg School of Public Health

10:00

People Can't See Statistical Significance: A Massive Randomized Trial on the Visual Perception of Relationships

Aaron Fisher*, Georgiana B. Anderson and **Jeff Leek**, Johns Hopkins Bloomberg School of Public Health

Monday, March 17

10:15 am - 10:30 pm

Refreshment Break with our Exhibitors

Grand Ballroom Foyer (3rd Floor)

Monday, March 17

10:30 am - 12:15 pm

25. STATISTICAL INNOVATIONS FOR STUDYING THE HUMAN BRAIN FUNCTION

Grand Ballroom II (3rd Floor)

Sponsors: ENAR, ASA Section on ASA Section on Statistics in Imaging

Organizer: Mark Fiecas, University of Warwick **Chair:** Mark Fiecas, University of Warwick

10:30

A New Method for Estimating Changes in Granger Causality in EEG Data

Ivor Cribben*, University of Alberta

10:55

Genome-wide Scan of Brain Phenotypes
Discovers Common Genetic Variants Influencing
Cortical Surface Area

Chi-Hua Chen*, Andrew Schork and Wes Thompson, University of California, San Diego Ole Andreasssen, University of Oslo Anders Dale, University of California, San Diego

11:20

Comparison of Parametric and Semiparametric Statistical Methods and Signal Processing Methodology for fMRI Signal Analysis Illustrated using a Gustatory Experiment

Jaroslaw Harezlak*, Indiana University Fairbanks School of Public Health

Mario Dzemidzic, Indiana University School of Medicine Maria A. Kudela and Jacek Urbanek, Indiana University Fairbanks School of Public Health

Brandon G. Oberlin and **David A. Kareken**, Indiana University School of Medicine

A Semi-parametric Quadratic Inference Approach for Longitudinal fMRI Data

Yu Chen*, Timothy D. Johnson and Min Zhang, University of Michigan

12:10

Floor Discussion

26. META-ANALYSIS OF GENE-ENVIRONMENT INTERACTION IN THE POST-GWAS ERA

Grand Ballroom VI (3rd Floor)

Sponsors: ENAR, ASA Section on Statistics and the Environment

Organizer: Bhramar Mukherjee, University of Michigan

Chair: Jaeil Ahn, University of Texas MD Anderson Cancer Center

10:30

Testing GxE in Genome-wide Association Studies Li Hsu*, Fred Hutchinson Cancer Research Center

10:55

Bayesian Meta-analysis Methods for Detecting G-E Interactions in Genomic Data

Xiaoquan Wen*, University of Michigan

11:20

The Role of Covariate Heterogeneity in Meta-analysis of Gene-environment Interactions with Quantitative Traits

Bhramar Mukherjee*, University of Michigan **Shi Li**, Eli Lilly and Company

11:45

Meta and Mega Analysis of G x E Interactions with Complex Disease Outcomes: Experience and Insights from the CHARGE Consortium

Kenneth Rice* and Colleen Sitlani,

University of Washington

12:10

Floor Discussion

27. STATISTICS METHODS FOR HIGH-THROUGHPUT GENOMICS

Grand Ballroom V (3rd Floor)

Sponsors: ENAR, ASA Biometrics Section, ASA Biopharmaceutical Section

Organizer: Hui Jiang, University of Michigan

Chair: Hui Jiang, University of Michigan

10:30

Statistical Issues with RNAseq Data

Rafael Irizarry*, Dana-Farber Cancer Institute and Harvard School of Public Health

10:55

Model-based Estimation of Abundances of Species, Microbial Genes and Pathways in Metagenomic Data

Hongzhe Li* and Eric Chen, University of Pennsylvania

11:20

Statistical Analysis of Time Course ChIP-seq Data

Xuekui Zhang and **Hongkai Ji***, Johns Hopkins Bloomberg School of Public Health

11:45

Sequencing Thousands of Human Genomes Goncalo R. Abecasis, University of Michigan School of Public Health

12:10

Floor Discussion

28. PANEL DISCUSSION: PERSONALIZED MEDICINE: BETTER TREATMENT FOR THE PATIENT OR THE RIGHT PATIENT FOR THE TREATMENT?

Grand Ballroom VIII (3rd Floor)

Sponsors: ENAR, ASA Biopharmaceutical Section

Organizer: Olga Marchenko, Innovation, Quintiles

Chair: Olga Marchenko, Innovation, Quintiles

10:30

Personanalized Medicine: Better Treatment for the Patient or the Right Patient for the Treatments? Anastasios A. Tsiatis, North Carolina State University

10:55

Keaven M. Anderson, Merck & Company, Inc.

11:20

Discussion

Stephen J. Ruberg, Eli Lilly and Company — Distinguished Research Fellow

Sandeep M. Menon, Pfizer Inc. and Boston University **Lisa M. LaVange**, U.S. Food and Drug Administration **Ilya Lipkovich**, Quintiles

12:00

29. RECENT ADVANCES IN STATISTICAL METHODS FOR META-ANALYSIS

Grand Ballroom III (3rd Floor)

Sponsors: ENAR, ASA Section on Bayesian Statistical Science, ASA Biopharmaceutical Section

Organizer: Yong Chen, University of Texas Health Science Center at Houston

Chair: Haitao Chu, University of Minnesota

10:30

Bayesian Network Meta-Analysis for Categorical Outcomes

Christopher H. Schmid* and **Thomas A. Trikalinos**, Brown University

11:00

Incorporation of Mixed Bivariate Outcomes and Individual Patient Data in Network Meta Analysis

Bradley P. Carlin* and **Hwanhee Hong**, University of Minnesota

Haoda Fu and Karen L. Price, Eli Lilly and Company

11:30

Meta-analysis of Diagnostic Test Accuracy Comparisons: Network Methods

Wei Cheng, Constantine Gatsonis*, Christopher Schmid and Thomas Trikalinos, Brown University

12:00

Floor Discussion

30. SUBGROUP ANALYSIS AND PERSONALIZED PREDICTION

Grand Ballroom IX (3rd Floor)

Sponsors: ENAR, ASA Biopharmaceutical Section

Organizer: Annie Qu, University of Illinois, Urbana-Champaign

Chair: Annie Qu, University of Illinois, Urbana-Champaign

10:30

Personalized Prediction

Yunzhang Zhu, Xiaotong Shen*, and Changqing Ye, University of Minnesota

10:55

Personalized Treatment for Longitudinal Data

Hyunkeun Cho*, Western Michigan University **Peng Wang**, Bowling Green State University **Annie Qu**, University of Illinois, Urbana-Champaign

11:20

Multiway Clustering with Hidden Structure

Bruce G. Lindsay*, The Pennsylvania State University
Francesco Bartolucci, University of Perugia
Francesca Chiaromonte, The Pennsylvania State University

11:45

Model-based Inference in Subgroup Analysis Xuming He* and Juan Shen, University of Michigan

12:10

Floor Discussion

31. LATENT VARIABLE MODELING FOR MULTIPLE OUTCOMES AND GROWTH MODELS IN PSYCHIATRIC STUDIES

Grand Ballroom VII (3rd Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section

Organizer: Samprit Banerjee, Cornell University

Chair: Yuanjia Wang, Columbia University

10:30

Shared Versus Specific Effects of Treatment on Multiple Outcomes in Clinical Trials using Latent Variable Modeling

Melanie Wall*, Columbia University

10:55

Using Multiple Imputation to Harmonize
Data Across Multiple Trials that use Different
Outcome Measures

Juned Siddique*, Northwestern University Ahnalee Brinks, University of Miami Charles H. Brown, Northwestern University Jerome P. Reiter, Duke University

11:20

Simultaneous Estimation of Mixture Model for Multilevel Data

Haiqun Lin*, Shu-xia Li, Xiao Xu and Harlan M. Krumholz, Yale University

11:45

Three Novel Applications of Latent Variable Modeling: A Discussion

Samprit Banerjee*, Cornell University

12:10

Floor Discussion

32. CONTRIBUTED PAPERS: BAYESIAN ANALYSIS OF HIGH DIMENSIONAL DATA

Grand Ballroom I (3rd Floor)

Sponsor: ENAR

Chair: Mark Reimers, Virginia Commonwealth University

10:30

Constrained Priors and X-inactivation

Alan B. Lenarcic*, John Calaway, Fernando Pardo and **William Valdar**, University of North Carolina, Chapel Hill

Bayesian Approach for Predicting Protein Secondary Structure

David B. Dahl, Brigham Young University **Qiwei Li*** and **Marina Vannucci**, Rice University **Hyun Joo** and **Jerry W. Tsai**, University of the Pacific

11:00

A Hierarchical Bayesian Model for Inference of Copy Number Variants and Their Association to Gene Expression

Alberto Cassese*, Rice University
Michele Guindani, University of Texas
MD Anderson Cancer Center
Mahlet G. Tadesse, Georgetown University
Francesco Falciani, University of Liverpool
Marina Vannucci, Rice University

11:15

Sampling Designs for Multi-Species Assemblage with Unknown Heterogeneity

Hongmei Zhang, University of South Carolina Kaushik Ghosh*, University of Nevada, Las Vegas Pulak Ghosh, Indian Institute of Management, Bangalore

11:30

Bayes Multiple Classification Function in Logic Regression Models

Wensong Wu* and Tan Li, Florida International University

11:45

Using Informative Priors Obtained from Historical Data Significantly Improves Detection of Differentially Expressed Genes using Microarray Data

Ben Li* and **Qing He**, Emory University **Zhaonan Sun** and **Yu Zhu**, Purdue University **Zhaohui Qin**, Emory University

12:00

Smoothing Functional Data with a Hierarchical Bayesian Model

Jingjing Yang*, Rice University Hongxiao Zhu, Virginia Tech Dennis D. Cox, Rice University

33. CONTRIBUTED PAPERS: GENETICS AND EPIDEMIOLOGIC STUDY DESIGN

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Chair: Osorio Meirelles, National Institute on Aging, National Institutes of Health

10:30

Control Function Assisted IPW Estimation with a Secondary Outcome in Case-control Studies

Tamar Sofer* and **Eric J. Tchetgen Tchetgen**, Harvard School of Public Health

10:45

Prediction of Cancer Drugs' Sensitivities using High-Dimensional Genomic Features

Ting-Huei Chen* and **Wei Sun**, University of North Carolina, Chapel Hill

11:00

Enhancing Genetic Case-control Studies using Sample Surveys

Parichoy Pal Choudhury* and **Daniel Scharfstein**, Johns Hopkins University

Joshua Galanter and **Chris Gignoux**, University of California, San Francisco

Lindsev Roth, Kaiser Permanente

Sam Oh, Esteban Burchard and **Saunak Sen**, University of California, San Francisco

11:15

The Effect of FTO Gene Variants and Physical Activity Interaction on Trunk Fat Percentage Among the Population of Newfoundland

Anthony Payne, Taraneh Abarin*, Farrell Cahill, Guang Sun and J Concepción Loredo-Osti, Memorial University

11:30

On the Underlying Assumptions of Threshold Boolean Networks as a Model for Genetic Regulatory Network Behavior

Van Tran*, Mathew N. McCall, Helene McMurray and Anthony Almudevar, University of Rochester Medical Center

11:45

Evaluation of Illumina Infimium 450K Methylation Chip using Technical Replicates

Maitreyee Bose*, Weihua Guan, Chong Wu, James Pankow, Ellen Demerath and Jan Bressler, University of Minnesota

12:00

Leveraging Family History in Genetic Association Studies

Arpita Ghosh*, Public Health Foundation of India **Patricia Hartge**, National Cancer Institute, National Institutes of Health

Peter Kraft and **Amit D. Joshi**, Harvard School of Public Health

Regina G. Ziegler, National Cancer Institute, National Institutes of Health

Myrto Barrdahl, German Cancer Research Center Stephen J. Chanock, Sholom Wacholder and Nilanjan Chatterjee, National Cancer Institute, National Institutes of Health

34. CONTRIBUTED PAPERS: NON-LINEAR MODELS

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Phebe Brenne Kemmer, Emory University

10:30

Single Index Change Point Model with an Application of Environmental Health Study on Mortality and Temperature

Hamdy Mahmoud* and **Inyoung Kim**, Virginia Tech **Ho Kim**, Seoul National University

10:45

A Model for Extreme Stacking of Data Censored at Endpoints of a Distribution with a Continuous Interior: Illustration with W-shaped Data

Robert Gallop*, Randall H. Rieger and **Scott McClintock**, West Chester University

David C. Atkins, University of Washington

11:00

Estimating a Dengue Ordinary Differential Equation Model with the Mesh Adaptive Direct Search Method

Yu-Ting Weng*, University of Pittsburgh **Shawn T. Brown** and **Nathan Stone**, Pittsburgh Supercomputing Center **Abdus S. Wahed**, University of Pittsburgh

11:15

Parametric and Nonparametric Spherical Regression

Michael M. Rosenthal ■, Wei Wu, Eric Klassen and Anuj Srivastava, Florida State University

11:30

Non-parametric Tests for One-Sided Interaction in Shape Restricted Models

Mingyu Xi*, University of Maryland, Baltimore County

11:45

Sparse Kernel Machine Regression for Ordinal Outcomes

Yuanyuan Shen*, Harvard School of Public Health Katherine Liao, Brigham and Women's Hospital Tianxi Cai, Harvard School of Public Health

12:00

Regression Models on Riemannian Symmetric Spaces

Emil A. Cornea*, Hongtu Zhu and **Joseph G. Ibrahim**, University of North Carolina, Chapel Hill

35. CONTRIBUTED PAPERS: SURVIVAL ANALYSIS FOR CLINICAL TRIAL DATA

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Chi Hyun Lee, University of Minnesota

10:30

Sample Size Calculation Based on Efficient Unconditional Tests for Clinical Trials with Historical Controls

Guogen Shan* and Sheniz Moonie,

University of Nevada, Las Vegas

10:45

Sieve Estimation in a Markov Illness-Death Process Under Dual Censoring

Audrey Boruvka* and Richard J. Cook,

University of Waterloo

11:00

A Simple Locally Efficient Estimator for Relative Risk in Case-cohort Studies

Emmanuel Sampene* and Abdus S. Wahed,

University of Pittsburgh

11:15

Generation of Virtual Control Groups for Single Arm Prostate Cancer Adjuvant Trials

Zhenyu Jia*, University of Akron and Northeast Ohio Medical University

Michael B. Lilly, Medical University of South Carolina **Dan A. Mercola**, University of California, Irvine

11:30

Imbalanced Randomization in Non-inferiority Trials can be Highly Efficient

Rick Chappell*, University of Wisconsin Madison

11:45

Estimating Survival Benefit in Randomized Clinical Trials with Treatment Arm Switching After Disease Progression

Shan Kang* and Thomas M. Braun, University of Michigan

12:00

Semiparametric Proportional Rates Regression for the Composite Endpoint of Recurrent and Terminal Events

Lu Mao* and **Danyu Lin**, University of North Carolina, Chapel Hill

36. CONTRIBUTED PAPERS: CLUSTERED DATA METHODS

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Michael D. Larsen, The George Washington University

10:30

A New Semiparametric Approach to Finite Mixture of Regressions using Penalized Regression via Fusion

Erin Austin*, Wei Pan and **Xiaotong Shen**, University of Minnesota

10:45

Semi-Parametric Models for Clustered Survival Data with Random Cluster Size

Shuling Liu*, Amita K. Manatunga and **Limin Peng**, Emory University

11:00

Identification of Biologically Relevant Subtypes via Preweighted Sparse Clustering

Sheila Gaynor*, Harvard University
Eric Bair, University of North Carolina, Chapel Hill

11:15

Estimation Methods for Copula Models for Discrete Clustered and Longitudinal Data

N. Rao Chaganty*, Old Dominion University

11:30

Biclustering via Sparse Clustering

Qian Liu , Guanhua Chen, Michael R. Kosorok and Eric Bair, University of North Carolina, Chapel Hill

11:45

Composite Likelihood Inference for Multivariate Finite Mixture Models with Application to Flow Cytometry Data

Fei Ma* and Ollivier Hyrien, University of Rochester

37. CONTRIBUTED PAPERS: STATISTICAL METHODS FOR LONGITUDINAL DATA

Chasseur Room (3rd Floor)

Sponsor: ENAR

Chair: Chulmin Kim, University of West Georgia

10:30

Sample Size Determination for Longitudinal Binary Response Data based on Testing the Difference in Rate of Change in Log Odds Ratio between Groups

Kush Kapur*, Boston Children's Hospital and Harvard Medical School

Dulal K. Bhaumik, University of Illinois, Chicago

10:45

Model Selection of Generalized Estimating Equations with Multiple Imputation and High-dimensional Covariates for Missing Longitudinal Data

Ming Wang*, The Pennsylvania State College of Medicine

11:00

An EM Algorithm for Multilevel Multivariate Mixed Effect Model with Unstructured Error Covariance Yun Ling* and Stewart J. Anderson, University of Pittsburgh

11:15

Regression Methodology for Comparing Longitudinal Rates of Change

Matthew W. Bryan*, University of Pennsylvania **Patrick Heagerty**, University of Washington

11:30

Three-step Estimation via Local Polynomial Smoothing for Unevenly Sampled Longitudinal Data

Lei Ye*, Ada O. Youk, Susan M. Sereika and **Lora E. Burke**, University of Pittsburgh

The Use of Tight Clustering Techniques for Group-based Trajectory Modeling of Longitudinal Data Accounting for Random Intercepts

Ching-Wen Lee* and **Lisa A. Weissfeld**, University of Pittsburgh

12:00

Monotone Spline-based Nonparametric Estimation of Longitudinal Data with Mixture Distribution

Wenjing Lu* and Ying Zhang, University of Iowa

Monday, March 17

12:15 pm - 1:30 pm

ROUNDTABLE LUNCHEONS

Dover Rooms (3rd Floor)

Monday, March 17

1:45 pm - 3:30 pm

38. RECENT DEVELOPMENTS IN ESTIMATING THE HEALTH EFFECTS OF AIR POLLUTION AND REGULATION

Grand Ballroom VIII (3rd Floor)

Sponsors: ENAR, ASA Section on Bayesian Statistical Science, Statistics and the Environment

Organizer: Brian Reich, North Carolina State University

Chair: Brian Reich, North Carolina State University

1:45

A Distributed Exposure Time-to-Event Model for Estimating Associations Between Air Pollution and Preterm Birth

Howard H. Chang*, Emory University
Joshua L. Warren, University of North Carolina, Chapel Hill
Lyndsey A. Darrow, Emory University
Brian J. Reich, North Carolina State University
Lance A. Waller, Emory University

2:10

Bayesian Kernel Machine Regression for Estimating the Health Effects of Pollution Mixtures

Brent A. Coull* and **Jennifer F. Bobb**, Harvard School of Public Health

Gregory A. Wellenius, Brown University **Murray Mittleman**, Beth Israel Deaconess Medical Center

2:35

Estimating the Health Benefit of Reducing Indoor Air Pollution in a Randomized Environmental Intervention

Roger D. Peng*, Arlene Butz, Amber J. Hackstadt, D'Ann L. Williams, Gregory B. Diette, Patrick N. Breysse and Elizabeth C. Matsui, Johns Hopkins University

3:00

Influence of Time-varying Air Pollution Exposure on Rate of Change Estimates for Progression of Cardiovascular Disease

Lianne Sheppard* and **Adel Lee**, University of Washington

3:25

Floor Discussion

39. RECENT ADVANCES IN CAUSAL INFERENCE

Grand Ballroom III (3rd Floor)

Sponsors: IMS, ASA Mental Health Statistics Section, ASA Biometrics Section

Organizer: Dylan Small, University of Pennsylvania **Chair: Dylan Small**, University of Pennsylvania

1:45

Causal Inference with Social Network Data: Inflated Effective Sample Sizes, Deflated Standard Errors, and Other Perils Elizabeth Ogburn *, Johns Hopkins University

2:10

Causal Inference with Continuous Treatments Yeying Zhu*, University of Waterloo Donna L. Coffman and Debashis Ghosh, The Pennsylvania State University

2:35

Balancing Covariates via Propensity Score Weighting: A New Perspective Fan Li*, Duke University Alan Zaslavsky, Harvard Medical School Kari Lock Morgan, Duke University

3:00

Robust Estimation of Causal Effects of Erythropoiesis-stimulating Agents (ESAs) on Mortality

Roee Gutman* and David D. Dore, Brown University

3:25

40. SOCIAL NETWORK DATA: CHALLENGES AND OPPORTUNITIES

Grand Ballroom II (3rd Floor)

Sponsors: IMS, ASA Statistical Learning and Data Mining Section

Organizer: Elizabeth Ogburn, Harvard University

Chair: Iván Díaz, Johns Hopkins University

1:45

What, if Anything, Do We Learn by Fitting an Exponential-family Random Graph Model?

Cosma Shalizi* and Alessandro Rinaldo,

Carnegie Mellon University

2:10

Bayesian Inference for Non-Ignorable Sampling in Social Networks

Simon Lunagomez* and Edoardo M. Airoldi, Harvard University

2:35

Targeted Learning of Causal Effects for Networks Mark J. van der Laan*, University of California, Berkeley

3:00

Diffusion Matters, But How? Kevin A. Bryan*, Northwestern University

3:25

Floor Discussion

41. STATISTICS AND COMPUTING FOR HIGH-THROUGHPUT SEQUENCING DATA

Grand Ballroom V (3rd Floor)

Sponsors: ENAR, ASA Statistical Learning and Data Mining Section

Organizer: Hongkai Ji, Johns Hopkins School of Public Health

Chair: Hongkai Ji, Johns Hopkins School of Public Health

1:45

Computational Challenges in Exome and RNA-Seq Analysis

Steven L. Salzberg*, Johns Hopkins University

2:10

Statistical Modeling of Alternative Splicing with RNA-Seq Data

Hui Jiang*, University of Michigan Julia Salzman, Stanford University Yang Shi, University of Michigan

2:35

Statistical Analysis of Deep Sequencing Data from Tumor Samples

Lin Hou, Yale School of Public Health **Mengjie Chen**, Yale University **Hongyu Zhao***, Yale School of Public Health

3:00

Models and Statistics for Detection of Genome Structural Variation

Nancy R. Zhang*, University of Pennsylvania David Siegmund, Stanford University Benjamin Yakir, The Hebrew University

3:25

Floor Discussion

42. VARIABLE SELECTION AND ANALYSIS OF HIGH DIMENSIONAL DATA

Grand Ballroom I (3rd Floor)

Sponsors: ENAR, ASA Statistical Learning and Data Mining Section

Organizer: Lily Wang, University of Georgia **Chair:** Lily Wang, University of Georgia

1:45

Regularized Semiparametric Functional Linear Regression

Helen Zhang*, University of Arizona

2:10

Dimension Reduction for Tensor Regression

Peng Zeng*, Auburn University **Wenxuan Zhong**, University of Georgia

2:35

Sparse Group LASSO for Pathway Based GWAS Tatiyana V. Apanasovich*, The George Washington University

3:00

43. FUNCTIONAL DATA ANALYSIS AND ITS APPLICATIONS IN GENETICS

Grand Ballroom VI (3rd Floor)

Sponsor: ENAR

Organizer: Ruzong Fan, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

Chair: Yifan Wang, National Institutes of Health

1:45

Most Predictive Interval Selection for Functional Predictors, with Application to Classifying Tumor Stages from Mass Spectra

Andreas Kryger Jensen, University of Southern Denmark, Odense

Hans-Georg Müller*, University of California, Davis

2:10

Restricted Likelihood Ratio Tests for Functional Effects in the Functional Linear Model

Bruce J. Swihart*, Johns Hopkins Bloomberg School of Public Health

Jeff Goldsmith, Columbia University

Ciprian M. Crainiceanu, Johns Hopkins Bloomberg School of Public Health

2:35

Gene-gene Interaction Analysis for Next-generation Sequencing

Momiao Xiong*, University of Texas School of Public Health

Yun Zhu and Jinying Zhao, Tulane University

3:00

Functional Regression Models for Association Analysis of Complex Traits

Ruzong Fan*, Yifan Wang and **James L. Mills**, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

Alexander F. Wilson and Joan E. Bailey-Wilson, National Human Genome Research Institute, National Institutes of Health

Momiao Xiong, University of Texas, Houston

3:25

Floor Discussion

44. EMERGING STATISTICAL CHALLENGES WITH COMPLEX LONGITUDINAL OR FUNCTIONAL DATA

Grand Ballroom IX (3rd Floor)

Sponsor: ENAR, ASA Biometrics Section

Organizer: Lu Wang, University of Michigan **Chair: Lu Wang**, University of Michigan

1:45

Consistent Estimation of Covariate Effects for Some Between-/Within-Cluster Covariate Decomposition Methods When Data are Missing at Random

John Neuhaus* and **Charles McCulloch**, University of California, San Francisco

2:10

Handling Missing Data for Multiple Waves of Longitudinal Data

Xuan Bi and Annie Qu*,

University of Illinois, Urbana-Champaign

2:35

A Broad Framework for Joint Modeling and Some Tales from the Unexpected

Geert Molenberghs*, I-BioStat, Hasselt Universiteit and Katholieke Universiteit Leuven, Belgium

Michael G. Kenward, London School of Hygiene and Tropical Medicine, UK

Marc Aerts, Hasselt Universiteit, Belgium

Geert Verbeke, Katholieke Universiteit Leuven and Hasselt Universiteit, Belgium

Anastasios Tsiatis and **Marie Davidian**, North Carolina State University

Dimitris Rizopoulos, Erasmus University, The Netherlands

3:00

Modeling and Estimation Methods for Physical Activity Data

Haocheng Li and **Raymond J. Carroll***, Texas A&M University

John Staudenmayer, University of Massachusetts, Amherst

3:25

45. CONTRIBUTED PAPERS: GENOME WIDE ASSOCIATION STUDIES

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Chair: Alexandre Bureau, Université Laval

1:45

Testing Calibration of Risk Models at Extremes of Disease-risk

Minsun Song*, National Cancer Institute, National Institutes of Health

Peter Kraft and **Amit D. Joshi**, Harvard School of Public Health

Myrto Barrdahl, German Cancer Research Center Nilanjan Chatterjee, National Cancer Institute, National Institutes of Health

2:00

An Adaptive Genetic Association Test using Double Kernel Machines

Xiang Zhan* and Debashis Ghosh, The Pennsylvania State University

2:15

Multi-Marker Tests for Joint Association in Longitudinal Studies using the Genetic Random Field Model

Zihuai He*, Min Zhang, Jennifer Smith, Sharon Kardia, Ana Diez Roux and Seunggeun Lee, University of Michigan

Xiuqing Guo and **Walter Palmas**, Columbia University **Bhramar Mukherjee**, University of Michigan

2:30

More Powerful Genetic Association Testing via a New Statistical Framework for Integrative Genomics

Sihai D. Zhao*, Tony Cai and **Hongzhe Li**, University of Pennsylvania

2:45

Principal Component Regression and Linear Mixed Model in Association Analysis of Structured Samples: Competitors or Complements?

Yiwei Zhang ■, Novartis Pharmaceuticals Wei Pan, University of Minnesota

3:00

A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity for Quantitative Traits

Peng Wei*, Ying Cao and **Taylor Maxwell**, University of Texas School of Public Health

3:15

Flexible and Robust Methods for Rare-variant Testing of Quantitative Traits in Pedigrees

Yunxuan Jiang*, Karen N. Conneely and Michael P. Epstein, Emory University

46. CONTRIBUTED PAPERS: APPLICATIONS OF BAYESIAN METHODS

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Jing Zhang, University of Minnesota

1:45

Semi-parametric Bayesian Clustering of Ophthalmology Data

Xin Tong*, University of South Carolina **Hongmei Zhang**, University of Memphis

2:00

A Nonparametric Bayesian Latent Factor Model for Body Image Evaluation

Kassie Fronczyk*, Rice University
Michele Guindani, University of Texas MD Anderson
Cancer Center

Marina Vannucci, Rice University

2:15

Bayes Sensitivity Analysis with Fisher-Rao Metric Sebastian Kurtek and Karthik Bharath*,

The Ohio State University

2:30

Bayesian Inference on Multiple Proportions for Misclassified Binomial Data

Dewi Rahardja and **Haiwen Shi***, U.S. Food and Drug Administration

2:45

Longitudinal Mediation Analysis

Chanmin Kim* and Michael J. Daniels,
University of Texas, Austin

Jason A. Roy, University of Pennsylvania **Beth H. Marcus**, University of California, San Diego

3:00

Estimation of Contact Network Properties using Multiple HIV Epidemic Data Sources

Ravi Goyal* and Nicole B. Carnegie, Harvard University

3:15

Bayesian Variable Selection for a Regression Model with a Misclassified Binary Covariate

Daniel P. Beavers*, Wake Forest School of Medicine **James D. Stamey**, Baylor University

47. CONTRIBUTED PAPERS: HIGH DIMENSIONAL DATA

Grand Ballroom VII (3rd Floor)

Sponsor: ENAR

Chair: Yuval Benjamini, Stanford University

1:45

Inference for Survival Prediction in the High Dimensional Setting

Jennifer A. Sinnott* and Tianxi Cai, Harvard University

2:00

Testing High-dimensional Nonparametric Function with Application to Gene Set Analysis

Tao He*, Ping-Shou Zhong, Yuehua Cui and Vidyadhar Mandrekar, Michigan State University

2:15

Variable Selection and Inference for Ultra-High Dimensional Survival Data With Missing Covariates Under Proportional Hazards Models

Yang Ning* and Grace Yi, University of Waterloo Baojiang Chen, University of Nebraska Nancy Reid, University of Toronto

2:30

An EM Test for the Contaminated Chi-Square Model

Feng Zhou*, University of Kentucky Hongying Dai, Children's Mercy Hospital Richard Charnigo, University of Kentucky

2:45

Biostatistical Matrix Time Series Models Seyed Yaser Samadi* and Lynne Billard,

University of Georgia

3:00

Supervised Singular Value Decomposition and Its Asymptotic Properties

Gen Li ■ and **Haipeng Shen**, University of North Carolina, Chapel Hill

Dan Yang, Rutgers, The State University of New Jersey **Andrew Nobel**, University of North Carolina, Chapel Hill

3:15

brainR: Interactive 3 and 4d Images of High Resolution Neuroimage Data

John Muschelli*, Elizabeth M. Sweeney and Ciprian M. Crainiceanu,

Johns Hopkins Bloomberg School of Public Health

48. CONTRIBUTED PAPERS: CLINICAL TRIALS

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Ashutosh Ranjan, University of Alabama, Birmingham

1:45

Outcome-adaptive Allocation with Natural Lead-in for Three-group Trials with Binary Outcomes

Ghalib A. Bello* and Roy T. Sabo,

Virginia Commonwealth University

2:00

Trial Design and Analysis Challenges When Studying Therapies Designed to Control Growth of Brain Metastases in Cancer Patients

Sujata M. Patil*, Memorial Sloan-Kettering Cancer Center

2:15

Understanding Inconsistencies Between Replicate Trials: Insomnia Case Study

Richard Entsuah, Kenneth Liu*, Junshui Ma, Duane Snavely and Ellen Snyder, Merck

2:30

Sample Size Determination for a Three-arm Equivalence Trial of Normally Distributed Responses

Yu-Wei Chang*, Temple University Yi Tsong and Xiaoyu Dong, U.S. Food and Drug Administration

Zhigen Zhao, Temple University

2:45

The Utility of Bayesian Predictive Probabilities for Interim Monitoring of Clinical Trials

Benjamin R. Saville*, Vanderbilt University School of Medicine

Jason Connor, Berry Consultants

Gregory Ayers and **JoAnn Alvarez**, Vanderbilt University School of Medicine

3:00

Evaluation of Bias for Outcome Response Adaptive Randomization Designs

Yaping Wang*, University of Texas MD Anderson Cancer Center and University of Texas School of Public Health Hongjian Zhu, University of Texas School of Public Health J. Jack Lee, University of Texas MD Anderson Cancer Center

3:15

Analysis of the Anticipated Power of a Test: Browne (1995) Revisited

Paul W. Stewart*, University of North Carolina, Chapel Hill

49. CONTRIBUTED PAPERS: PERSONALIZED MEDICINE AND VARIABLE SUBSET SELECTION

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Na Zhang, North Carolina State University

1:45

Multivariate Markov Models for the Conditional Probability of Toxicity in Phase II Trials

Laura L. Fernandes*, Susan Murray and Jeremy MG Taylor, University of Michigan

2:00

Latent Supervised Learning for Estimating Treatment Effect Heterogeneity

Susan Wei* and **Michael R. Kosorok**, University of North Carolina, Chapel Hill

2:15

Personalized Selection of Radiation Therapy Dose using Statistical Models for Toxicity and Efficacy with Dose and Biomarkers as Covariates

Matthew Schipper* and **Jeremy MG Taylor**, University of Michigan

Feng-Ming Kong, Georgia Regents University **Randy TenHaken** and **Martha Matuzak**, University of Michigan

2:30

Simultaneous Inference for Assessing the Effects of a SNP on Treatment Efficacy in Personalized Medicine

Ying Ding*, University of Pittsburgh Grace Li and Stephen J. Ruberg, Eli Lilly and Company Jason C. Hsu, Eli Lilly and Company and The Ohio State University

2:45

Consistent Variable Selection for Quantile Regression with Varying Covariate Effects Qi Zheng* and Limin Peng, Emory University

3:00

Consistent Bi-level Variable Selection via Composite Group Bridge Regression

Indu Seetharaman, Kansas State University **Kun Chen***, University of Connecticut

3:15

Penalized Regression for Interval-Censored Times of Disease Progression: Selection of HLA Markers in Psoriatic Arthritis

Ying Wu* and Richard Cook, University of Waterloo

50. CONTRIBUTED PAPERS: ANALYSIS OF CLUSTERED DATA

Chasseur Room (3rd Floor)

Sponsor: ENAR

Chair: Jacek Urbanek, Indiana University Fairbanks School of Public Health

1:45

Statistical Methods for Assessing Perception in Children with Cochlear Implants

Michael D. Larsen* and **Cynthia Core**, The George Washington University

Janean Wilson, Children's National Medical Center James Mahshie, The George Washington University

2:00

Identify Common Clusters in Independent Populations with Application to Psychiatry Yun Zhang*, Kehui Chen, Allan Sampson and David Volk,

Generalized Estimating Equation in Analyzing Group-Randomized Trials with Limited Number of Groups

Peng Li* and **David T. Redden**, University of Alabama, Birmingham

2:30

Accounting for Covariates in Differential Methylation Analysis with Next-generation Sequencing

Hongyan Xu*, Georgia Regents University **Robert Podolsky**, Wayne State University **Duchwan Ryu** and **Varghese George**, Georgia Regents University

2:45

Evaluating Predictors of Individual Dietary Intake Latent Values under Different Mixed Models

Shuli Yu* and **Edward J. Stanek III**, University of Massachusetts, Amherst

3:00

A Markov Mixture Model for Longitudinal Course of Youth Bipolar Disorder

Jieyu Fan*, Satish lyengar and **Boris Birmaher**, University of Pittsburgh

Adriana Lopez, Carnegie Mellon University, Qatar Rasim S. Diler, University of Pittsburgh David Axelson, The Ohio State University Benjamin Goldstein, University of Toronto Tina Goldstein, University of Pittsburgh Fangzi Liao and Mary K. Gill, Western Psychiatric Institute and Clinic

3:15

Longitudinal Multivariate Outcome Data from Couples: Application to HPV Transmission Couple Studies

Xiangrong Kong*, Johns Hopkins University Bloomberg School of Public Health

Monday, March 17

3:30 pm - 3:45 pm

Refreshment Break with Our Exhibitors

Grand Ballroom Foyer (3rd Floor)

Monday, March 17

3:45 pm - 5:30 pm

51. THE ROLE OF STATISTICS IN SHAPING PUBLIC POLICY

Grand Ballroom II (3rd Floor)

Sponsors: ENAR, ASA Government Statistics Section

Organizer: Hernando Ombao,

University of California at Irvine

Chair: Hernando Ombao, University of California at Irvine

3:45

Statisticians: Guardians of Democracy!
Roderick J. Little*, University of Michigan

4:30

Big Statistics, Major Policies, and... a Little Politics Sally C. Morton*, University of Pittsburgh

5:15

Floor Discussion

52. PANEL DISCUSSION: HAVING IT ALL: WEIGHTING TO ACHIEVE BALANCE

Grand Ballroom V (3rd Floor)

Sponsor: ENAR

Organizers: Shari Messinger, University of Miami and **Leslie McClure**, University of Alabama, Birmingham

Chairs: Shari Messinger, University of Miami and **Leslie McClure**, University of Alabama at Birmingham

3:45

Thomas M. Braun, University of Michigan **Mary D. Sammel**, University of Pennsylvania **Telba Z. Irony**, U.S. Food and Drug Administration **Aarti Shah**, Eli Lilly & Company **Francesca Dominici**, Harvard School of Public Health

5:15

53. BIOSTATISTICAL METHODS FOR INTEGRATIVE GENOMICS

Grand Ballroom VI (3rd Floor)

Sponsor: ENAR

Organizer: Wei Sun, University North Carolina, Chapel Hill

Chair: Wei Sun, University North Carolina, Chapel Hill

3:45

A Brief Overview of Modelling Approaches in Integrative Genomics, with Special Reference to eQTL Analyses

Sylvia T. Richardson*, Cambridge Institute of Public Health

4:25

Information Integrative Framework for Sparse K-means to Combine multi-Cohort and Multi-omics Data

Zhiguang Huo, Sunghwan Kim and George C. Tseng*, University of Pittsburgh

4:45

EgoNet:

Identification of Disease Ego-network Modules Rendong Yang, Zhaohui S. Qin and Tianwei Yu*, Emory University

5:05

Extensions to Hidden Markov Models and Their Application to Integrated Analysis of Multiple Chromatin Immunoprecipitation Data

Hyung Won Choi, National University of Singapore **Damian Famian** and **Alexey Nesvizhskii**, University of Michigan

Debashis Ghosh, The Pennsylvania State University **Zhaohui S. Qin***, Emory University

5:25

Floor Discussion

54. SAFETY SURVEILLANCE MONITORING THROUGH SIGNAL DETECTION

Grand Ballroom I (3rd Floor)

Sponsors: ENAR, ASA Biopharmaceutical Section

Organizer: Theodore Lystig, Medtronic, Inc.

Chair: Laura Hatfield, Harvard Medical School

3:45

Methodological Challenges for Sequential Medical Product Safety Surveillance using Observational Healthcare Data

Andrea J. Cook* and **Jennifer C. Nelson**, Group Health Research Institute

4:10

Graphical Approaches for Disproportionality Analysis of Spontaneously-Reported Adverse Events in Pharmacovigilance

Richard C. Zink*, JMP Life Sciences at SAS Insitute, Inc.

4:35

Likelihood Ratio Tests for Active Surveillance Ram C. Tiwari*, U.S. Food and Drug Administration

5:00

Discussion of Safety Surveillance Monitoring Through Signal Detection Theodore Lystig*, Medtronic, Inc.

5:25

Floor Discussion

55. MULTIPLE TESTING AND SIMULTANEOUS INFERENCES IN COMPLEX SETTINGS

Grand Ballroom III (3rd Floor)

Sponsors: ENAR, ASA Statistical Learning and Data Mining Section, ASA Biopharmaceutical Section

Organizer: Yi-Hui Zhou, North Carolina State University
Chair: Yi-Hui Zhou, North Carolina State University

3:45

False Discovery Rate Control and Group Testing for Complex Omics Data

Andrew B. Nobel* and **Gen Li**, University of North Carolina, Chapel Hill

Andrey Shabalin, Virginia Commonwealth University **Ivan Rusyn**, University of North Carolina, Chapel Hill **Fred A. Wright**, North Carolina State University

4:10

Another Look at Robust PC-based Stratification Control for Multiple Testing

Yi-Hui Zhou*, North Carolina State University

4:35

Simultaneous Inference of Multiple Rare Variants: Design, Power and Interpretation of Findings

Andriy Derkach, University of Toronto **Jerry F. Lawless**, University of Waterloo **Lei Sun***, University of Toronto

5:00

Extending the Projack to Complex Settings Fred A. Wright* and Yi-Hui Zhou, North Carolina State University

5:25

56. NEW DEVELOPMENTS IN BAYESIAN NONPARAMETRICS

Grand Ballroom IX (3rd Floor)

Sponsors: IMS, ASA Section on Bayesian Statistical Science

Organizer: Jian Kang, Emory University School of Public Health

Chair: Jian Kang, Emory University School of Public Health

3:45

Scalable Bayesian ASA Section on Nonparametric Statistics

David B. Dunson*, Duke University

4:10

Bayesian Models of Structured Sparsity for Discovery of Regulatory Genetic Variants

Ryan P. Adams*, Harvard University **Barbara Engelhardt**, Duke University

4:35

Bayesian Nonparametric Inference of Population Admixtures

Maria De Iorio* University College London Stefano Favaro, Universita' degli Studi di Torino Yee Whye Teh, University of Oxford Lloyd Elliott, University College London

5:00

Pre-surgical Assessment of Peritumoral Brain Activation Via a Bayesian Non-parametric Potts Model

Timothy D. Johnson*, University of Michigan

5:25

Floor Discussion

57. CONTRIBUTED PAPERS: STATISTICAL GENETICS AND GENOMICS

Grand Ballroom VIII (3rd Floor)

Sponsor: ENAR

Chair: Sihai Dave Zhao, University of Pennsylvania

3:45

Sparse Multivariate Factor Analysis Regression Models and Its Applications to Integrative Genomics Analysis

Yan Zhou* and **Peter Song**, University of Michigan **Pei Wang**, Fred Hutchinson Cancer Research Center **Ji Zhu**, University of Michigan

4:00

A General Statistical Framework for Transcript Assemblies

Alyssa Frazee*, Geo Pertea, Steven Salzberg and Jeff Leek, Johns Hopkins University

4:15

Nonparametric Test for Differential Binding Analysis with ChIP-Seq Data

Qian Wu*, Kyoung-Jae Won and **Hongzhe Li**, University of Pennsylvania

4:30

A Statistical Framework for Expression QTL Mapping via Two-way Mixture Model

Ningtao Wang*, Yaqun Wang, Bruce Lindsay and **Rongling Wu**, The Pennsylvania State University

4:45

SVM with Bootstrap for Soft Clustering of Populations

Matey Neykov*, Harvard University

5:00

Functional Principal Component Analysis for Next Generation Sequencing Lieven Clement*, Ghent University

5:15

The Generalized Higher Criticism for Testing SNP-sets in Genetic Association Testing Ian J. Barnett ■ and Xihong Lin, Harvard University

58. CONTRIBUTED PAPERS: IMAGING

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Chair: Sheng Luo, University of Texas Health Science Center at Houston

3:45

Modeling Covariate Effects in Group Independent Component Analysis with Applications to Functional Magnetic Resonance Imaging Ran Shi* and Ying Guo, Emory University

4:00

Quantile Mapping for Multi-modal Imaging Data Huaihou Chen*, Philip T. Reiss, Clare Kelly and Xavier F. Castellanos, New York University School of Medicine

4:15

Latent Variable Models for Longitudinal MR Imaging Data with Multiple Outcomes
Xiao Wu*, University of Florida
Michael J. Daniels, University of Texas, Austin

4:30 A Novel Brain Connectivity Network Model: Build Bridges Between Network Communities

Shuo Chen*, University of Maryland, College Park

A Bayesian Model for Brain Activation and Connectivity

Zhe Yu* and **Hernando Ombao**, University of California, Irvine

Raquel Prado, University of California, Santa Cruz **Erin Burke** and **Steve Cramer**, University of California, Irvine

5:00

Pre-Surgical fMRI Data Analysis using a Spatially Adaptive Conditional Autoregressive Model

Zhuqing Liu*, Veronica J. Berrocal and Timothy D. Johnson, University of Michigan

5:15

Spatial and Temporal Pattern in the Brain Accounting Cognitive Changes After Mild Traumatic Brain Injury

Namhee Kim*, Craig A. Branch and Michael L. Lipton, Albert Einstein College of Medicine

59. CONTRIBUTED PAPERS: SEMI-PARAMETRIC AND NON-PARAMETRIC MODELS IN SURVIVAL ANALYSIS

Grand Ballroom VII (3rd Floor)

Sponsor: ENAR

Chair: Tian Dai, Emory University

3:45

Semiparametric Bayes Estimation of Gap-Time Distribution with Correlated Recurrent Event Data

AKM F. Rahman* and **Edsel A. Pena**, University of South Carolina, Columbia

4:00

Quantile Regression Models for Current Status Data Fang-Shu Ou , Donglin Zeng and Jianwen Cai,

University of North Carolina, Chapel Hill

4:15

Competing Risks Regression Under Random Signs Censoring

Jonathan Yabes* and **Joyce Chang**, University of Pittsburgh

4:30

Regression Analysis of Informatively Interval-censored Failure Time Data with Cox Model

Ling Ma*, University of Missouri, Columbia **Tao Hu**, Capital Normal University, China **Jianguo Sun**, University of Missouri, Columbia

4:45

Floor Discussions

5:00

Weighted Estimation of the Accelerated Failure Time Model in the Presence of Dependent Censoring

Youngjoo Cho* and Debashis Ghosh,

The Pennsylvania State University

5:15

Model Assisted Cox Regression

Shoubhik Mondal* and **Sundarraman Subramanian**, New Jersey Institute of Technology

60. CONTRIBUTED PAPERS: HIERARCHICAL MODELS

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Michelle Ross, University of Pennsylvania

3:45

Examining the Spatio-temporal Trend Between Alcohol Outlets and Violence using Integrated Nested Laplace Approximations

Loni P. Tabb*, Drexel University **Tony H. Grubesic**, Oregon State University

4:00

The Role of Prior Effective Sample Size in the Design of Bayesian Medical Device Studies Gene A. Pennello and Laura Thompson*,

U.S. Food and Drug Administration

4:15

A Hybrid Bayesian Hierarchical Model Combining Cohort and Case-control Studies for Meta-analysis of Diagnostic Tests: Accounting for Disease Prevalence and Partial Verification Bias

Xiaoye Ma*, University of Minnesota Yong Chen, University of Texas Stephen Cole, University of North Carolina, Chapel Hill Haitao Chu, University of Minnesota

4:30

Group Comparison of Pulsatile Hormone Times Series

TingTing Lu* and **Timothy D. Johnson**, University of Michigan

4:45

Population Size Estimation with Inactive Lists: Hierarchical Mixture Models and Missing Data with Application to Armed Conflict Data

Shira Mitchell* and Al Ozonoff, Harvard University Kristian Lum, Virginia Polytechnic Institute and State University

Alan M. Zaslavsky and Brent A. Coull, Harvard University

Bayesian Hierarchical Joint Modeling of Repeatedly Measured Continuous and Ordinal Markers of Disease Severity

Olive D. Buhule*, Abdus S. Wahed and Ada O. Youk, University of Pittsburgh

5:15

Hierarchical Nearest-Neighbor Gaussian Process Models for Massive Geostatistical Datasets

Abhirup Datta* and **Sudipto Banerjee**, University of Minnesota

Andrew O. Finley, Michigan State University

61. CONTRIBUTED PAPERS: METHODS FOR REMOVING SELECTION BIAS AND CONFOUNDING

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Yenny Webb-Vargas,

Johns Hopkins Bloomberg School of Public Health

3:45

Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data

Jose Zubizarreta ■, Columbia University

4:00

Matching using Propensity Score Methods for Time-varying Treatments

Pallavi S. Mishra-Kalyani*, Brent A. Johnson and Qi Long, Emory University

4:15

Estimating Causal Effects in an Observational Study with a Survival Time Endpoint

Jaeun Choi* and **Mary Beth Landrum**, Harvard Medical School

A. James O'Malley, Dartmouth College **Bruce Landon**, Harvard Medical School

4:30

Weighting to Strengthen an Instrumental Variable Doug Lehmann*, Yun Li and Yi Li, University of Michigan

4:45

Propensity Score Bin Bootstrapping Method in Estimation of Cost-Effectiveness

Zugui Zhang*, Paul Kolm and **William S. Weintraub**, Christiana Care Health System

5:00

Maximum Likelihood Adjustment for Mis-measured Exposure using External Validation Data and Propensity Scores

Danielle Braun*, Harvard School of Public Health and Dana-Farber Cancer Institute

Malka Gorfine, Israel Institute of Technology

Corwin Zigler and **Francesca Dominici**, Harvard School of Public Health

Giovanni Parmigiani, Harvard School of Public Health and Dana-Farber Cancer Institute

5:15

Examination of Statistical Power in a Propensity Score Analysis Approach

Falynn C. Turley* and **David Redden**, University of Alabama, Birmingham

62. CONTRIBUTED PAPERS: FUNCTIONAL DATA ANALYSIS

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Guanqun Cao, Auburn University

3:45

Structured Functional Principal Component Analysis

Haochang Shou*, Vadim Zipunnikov and **Ciprian M. Crainiceanu**, Johns Hopkins Bloomberg School of Public Health

Sonja Greven, Ludwig-Maximilians-Universitat, Germany

4:00

A Robust Approach for Functional Linear Regression Model

Yihong Zhao*, New York University Medical Center **R. Todd Ogden**, Columbia University Medical Center **Huaihou Chen**, New York University Medical Center

4:15

Nonlinear Functional Regression Models with Application to Copy Number Data

Adrian Coles* and **Arnab Maity**, North Carolina State University

Ganiraju Manyam and **Veerabhadran Baladandayuthapani**, University of Texas MD Anderson Cancer Center

4:30

Generalized Functional Linear Models for Case-Control Association Studies

Ruzong Fan, Yifan Wang* and James L. Mills, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Iryna Lobach, University of California, San Francisco Momiao Xiong, University of Texas, Houston

Wavelet-based Function-on-Function Mixed Models

Mark J. Meyer* and Brent A. Coull, Harvard University Francesco Versace and Jeffrey S. Morris, University of Texas MD Anderson Cancer Center

5:00

A Computational Framework for Genetic Mapping of Heterochrony

Han Hao*, Ningtao Wang and Yaqun Wang, The Pennsylvania State University Jianxin Wang and Zhong Wang, Beijing Forestry University Rongling Wu, The Pennsylvania State University

63. CONTRIBUTED PAPERS: RECENT ADVANCES IN BAYESIAN METHODS

Chasseur Room (3rd Floor)

Sponsor: ENAR

Chair: Karthik Bharath, The Ohio State University

3:45

Incorporating Spatial Dependence into Bayesian Multiple Testing of Statistical Parametric Maps in Functional Neuroimaging

Andrew Brown*, Clemson University
Nicole A. Lazar and Gauri S. Datta, University of Georgia
Woncheol Jang, Seoul National University
Jennifer E. McDowell, University of Georgia

4:00

Multivariate Bayesian Censored Models for Predicting Exposure to Multiple Chemical Agents

Caroline Groth*, Sudipto Banerjee, Tran Huynh and Gurumurthy Ramachandran, University of Minnesota Richard Kwok, National Institute of Environmental Health Sciences, National Institutes of Health

Mark Stenzel, Exposure Assessment Applications, LLC Patricia Stewart, Stewart Exposure Assessments, LLC

4:15

Methods in Functional Data Analysis for Curve Comparison in Spectroscopic Protein Unfolding Data: Applications using Bayesian Inferential Methods

Miranda L. Lynch*,

University of Connecticut Health Center

4:30

Bayesian Variable Selection for High Dimensional Datasets in the Presence of Error-prone Time-toevent Outcomes

Xiangdong Gu* and **Raji Balasubramanian**, University of Massachusetts, Amherst 4:45

Cortical Thickness Thinning and Cognitive Impairment in Parkinson's Disease Without Dementia

Lijun Zhang*, Ming Wang, Nicholas Sterling, EunYoung Lee, Guangwei Du, Mechelle Lewis and Xuemei Huang, The Pennsylvania State University,

Milton S. Hershey Medical Center

5:00

Bayesian Modeling of Mixed Outcome Types using Random Effect

Hua Wei*, Eli Lilly and Company

5:15

An Objective Stepwise Bayes Approach to Small Area Estimation

Yanping Qu*, U.S. Food and Drug Administration **Glen D. Meeden**, University of Minnesota

Tuesday, March 18

8:30 am - 10:15 am

64. STATISTICAL LEARNING FOR COMPLEX MULTIVARIATE BIOMEDICAL DATA

Grand Ballroom VIII (3rd Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section, ASA Statistical Learning and Data Mining Section

Organizer: Huaihou Chen, New York University
Chair: Huaihou Chen, New York University

8:30

Linear Conditioning for Clustering Functional Data Thaddeus Tarpey*, Wright State University

8:55

Multiple Kernel Statistical Learning to Combine Heterogeneous Data Sources for Prediction

Tianle Chen, Columbia University **Donglin Zeng**, University of North Carolina, Chapel Hill **Yuanjia Wang***, Columbia University

9:20

Margin-based Learning of Minimum Clinically Important Difference

Tu Xu and **Samad Hedayat**, University of Illinois, Chicago **Junhui Wang***, City University of Hong Kong

Dynamic Directional Model for Effective Brain Connectivity using Electrocorticographic (ECoG) Time Series

Tingting Zhang* and **Jingwei Wu**, University of Virginia **Fan Li**, Duke University

Dana Boatman-Reich and Brian Caffo,

Johns Hopkins University

10:10

Floor Discussion

65. STATISTICAL CHALLENGES IN STUDIES OF ENVIRONMENTAL, REPRODUCTIVE AND PERINATAL HEALTH

Harborside Room A (4th Floor)

Sponsors: ENAR, ASA Section on Statistics and the Environment

Organizer: Kirsten Lum, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

Chair: Kirsten Lum, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

8:30

The Current Duration Approach to Estimating Time to Pregnancy

Niels Keiding*, University of Copenhagen, Denmark

8:55

Prediction of Fecundity Based on Joint Modeling of Multiple Time Scale Longitudinal Intercourse and Menstrual Cycle Characteristics

Rajeshwari Sundaram*, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

9:20

Air Pollution Metric Analysis while Determining Susceptible Periods of Pregnancy for Low Birth Weight and Birth Defects

Montse Fuentes*, North Carolina State University
Joshua L. Warren and Amy H. Herring, University of North
Carolina, Chapel Hill

Peter H. Langlois, Texas Department of State Health Services, Austin

9:45

Identifying "Bad Actors" in Mixtures of Prenatal Exposures Associated with Reproductive Health using Weighted Quantile Sum Regression

Chris Gennings*, Virginia Commonwealth University **Caroline K. Carrico**, Health Diagnostics Laboratory

10:10

Floor Discussion

66. NEW DEVELOPMENTS IN STATISTICAL METHODOLOGIES FOR THE ANALYSIS OF DISEASE DATA

Grand Ballroom II (3rd Floor)

Sponsor: ENAR

Organizer: Sujay Datta, University of Akron
Chair: Sujay Datta, University of Akron

8:30

Making the Cut: Improved Ranking and Selection in Large-scale Inference

Nicholas Henderson and Michael A. Newton*, University of Wisconsin, Madison

8:55

Generation of Virtual Control Groups for Single Arm Prostate Cancer Adjuvant Trials

Zhenyu Jia*, University of Akron and Northeast Ohio Medical University

Michael B. Lilly, Medical University of South Carolina **Dan A. Mercola**, University of California, Irvine

9:20

Differential Network Analysis using Microarray Gene Expression Data

Susmita Datta*, University of Louisville

9:45

Fused Lasso with the Adaptation of Parameter Ordering (FLAPO) in Meta Analysis of Repeated Measurements

Fei Wang, Ford Motor Credit

Lu Wang and **Peter XK Song***, University of Michigan

10:10

Floor Discussion

67. RECENT DEVELOPMENT AND APPLICATION OF BAYESIAN METHODS FOR THE PROBABILITY OF SUCCESS AND DECISION MAKING IN CLINICAL TRIALS

Harborside Room B (4th Floor)

Sponsors: ENAR, ASA Section on Bayesian Statistical Science, ASA Biopharmaceutical Section

Organizer: Ming-Hui Chen, University of Connecticut

Chair: Mani Y. Lakshminarayanan, Pfizer Inc.

8:30

Using Prior Information to Help Determine Appropriate Metrics for Sound Decision Making in Drug Development

Christy Chuang-Stein*, Pfizer Inc.

Average Power and Average Conditional Power in Clinical Trial Design and Interim Analysis

Kuang-Kuo G. Lan*, Janssen R&D, Johnson & Johnson

9:20

Bayesian Probability of Success for Superiority Trials in the Presence of Historical Data

Joseph G. Ibrahim*, University of North Carolina, Chapel Hill

Ming-Hui Chen, University of Connecticut Mani Y. Lakshminarayanan, Guanghan Liu, Joseph F. Heyse, Merck, Inc.

9:45

Evaluating Regression-to-the-Mean of Treatment Effect from Phase 2 to Phase 3

Jianliang Zhang*, MedImmune, LLC

10:10

Floor Discussion

68. FUNCTIONAL DATA ANALYSIS: SHOW ME THE DATA

Grand Ballroom III (3rd Floor)

Sponsors: IMS, ASA Biometrics Section, ASA Section on Nonparametric Statistics

Organizer: Ciprian Crainiceanu, Johns Hopkins University

Chair: Jaroslaw Harezlak, Indiana University School of Medicine

8:30

CSI Statistics: Functional Data Analysis for Dead Bodies

John Aston*, University of Cambridge and University of Warwick

Anna Zylbersztejn, University of Warwick **Anna Zylbersztejn**, University of Warwick and University of Leicester

8:55

Surviving in the ICU: The Case for Uneven Support Functional Data Analysis

Ciprian Crainiceanu* and **Jonathan Gellar**, Johns Hopkins University

9:20

Studying the Relationship Between Cerebral Vessel Morphology and Hemodynamic Forces in Arteries Affected by Aneurysms:
A Spatial Functional Data Analysis Approach

Laura M. Sangalli*, Laboratory for Modeling and Scientific Computing MOX, Italy **Bree Ettinger**, Emory University

Simona Perotto, Laboratory for Modeling and Scientific Computing MOX, Italy

9:45

Functional Prediction of Traffic Streams

Jeng-Min Chiou*, Academia Sinica

10:10

Floor Discussion

69. LATENT CLASS MODELS FOR DIAGNOSTIC TESTING WITH APPLICATIONS IN PSYCHIATRY

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Organizer: Jeffrey Douglas, University of Illinois, Urbana-Champaign

Chair: Jeffrey Douglas, University of Illinois, Urbana-Champaign

8:30

Theory and Applications of the Self-learning Q-matrix

Jingchen Liu*, Columbia University

8:55

Making Computerized Adaptive Testing a Diagnostic Tool

Hua-Hua Chang*, University of Illinois, Urbana-Champaign **Ya-Hui Su**, National Chung Cheng University

9:20

Heterogeneous Variance Classification Models for Psychiatric Assessment Survey Data

Jonathan Templin*, University of Kansas **Lesa Hoffman, Ryan Walters** and **Meghan Sullivan**, University of Nebraska, Lincoln

9:45

Use of Latent Product Lattice Classification Models for Self-reported Measures of Depression

Curtis Tatsuoka*, Case Western Reserve University

10:10

Floor Discussion

70. STATISTICAL METHODS FOR BIOMARKER EVALUATION

Grand Ballroom I (3rd Floor)

Sponsor: ENAR

Organizer: Shanshan Li, Indiana University, Fairbanks School of Public Health

Chair: Mei-Cheng Wang, Johns Hopkins Bloomberg School of Public Health

8:30

Semi-parametric ROC Analysis using Accelerated Regression Models

Eunhee Kim*, Brown University

Donglin Zeng, University of North Carolina, Chapel Hill

Nonparametric ROC Based Evaluation for **Survival Outcomes**

Xiao Song*, University of Georgia Xiao-Hua Zhou, Puget Sound Health Care System and University of Washington Shuangge Ma, Yale University

9:20

A Generalized C-index for Survival Data

Patrick J. Heagerty*, University of Washington

9:45

Estimating Time-Dependent ROC Curve using Data Under Outcome-Dependent Sampling

Shanshan Li*, Indiana University Fairbanks School of Public Health

Mei-Cheng Wang, Johns Hopkins Bloomberg School of Public Health

10:10

Floor Discussion

71. CONTRIBUTED PAPERS: SEMI-PARAMETRIC AND NON-PARAMETRIC MODELS

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Mathew McLean, Texas A&M University

8:30

Robust Estimations of Scale, Dependence and Correlation Based on Quick Estimators

Lai Wei*, U.S. Food and Drug Administration Alan Hutson, State University of New York at Buffalo

8:45

An RKHS Approach to Estimating **High-dimensional Graphs**

Kuang-Yao Lee*, Yale University Bing Li, The Pennsylvania State University Hongyu Zhao, Yale University

9:00

Quantile Association Regression Models

Ruosha Li* and Yu Cheng, University of Pittsburgh Jason Fine, University of North Carolina, Chapel Hill

9:15

Calibrated Smoothed Bootstrap **Confidence Intervals**

Santu Ghosh*, Wayne State University

9:30

Semiparametric Group Testing Regression Models

Dewei Wang*, Christopher S. McMahan and Colin M. Gallagher, Clemson University Kurunarathna B. Kulasekera, University of Louisville

9:45

A Novel Pairwise Conditional Likelihood Ratio Test in a Semiparametric Model for vQTL Mapping

Chuan Hong* and Yong Chen, University of Texas School of Public Health, Houston

Yang Ning, University of Waterloo

Peng Wei, University of Texas School of Public Health, Houston

10:00

Fused Kernel-Spline Smoothing for Repeatedly Measured Outcomes in a Generalized Partially Linear Model with Functional Single Index

Fei Jiang ■, Rice University Yanyuan Ma, Texas A & M University Yuanjia Wang, Columbia University

72. CONTRIBUTED PAPERS: JOINT MODELS FOR LONGITUDINAL AND SURVIVAL DATA

Bristol Room (3rd Floor)

Sponsor ENAR

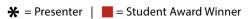
Chair: Kush Kapur, Boston Children's Hospital and Harvard Medical School

8:30

Joint Latent Class Models With Interval-Censored **Survival Data**

Lan Kong* and Guodong Liu, The Pennsylvania State University College of Medicine

8:45


A Fast EM Algorithm for Fitting Joint Models of a Binary Response and Multiple Longitudinal **Covariates Subject to Detection Limits**

Paul W. Bernhardt*, Villanova University Daowen Zhang and Huixia J. Wang, North Carolina State University

9:00

Regression Modeling of Longitudinal Binary Outcomes with Outcome-Dependent Observation Times

Kay See Tan ■, Andrea B. Troxel, Stephen E. Kimmel, Kevin G. Volpp and Benjamin French, University of Pennsylvania Perelman School of Medicine

Joint Model for a Diagnostic Test without a Gold Standard in the Presence of a Dependent Terminal Event

Sheng Luo*, Xiao Su and **Stacia DeSantis**, University of Texas, Houston

Xuelin Huang, Min Yi and **Kelly Hunt**, University of Texas MD Anderson Cancer Center

9:30

Modeling Short- and Long-Term Characteristics of Follicle Stimulating Hormone as Predictors of Severe Hot Flashes in Penn Ovarian Aging Study

Bei Jiang* and **Naisyin Wang**, University of Michigan **Mary D. Sammel**, University of Pennsylvania **Michael R. Elliott**, University of Michigan

9:45

Regression Analysis of Longitudinal Data with Correlated Censoring and Observation Times

Yang Li*, University of North Carolina, Charlotte Haiying Wang, University of New Hampshire Jianguo Sun, University of Missouri, Columbia

10:00

Mixtures of Gaussian Processes Applied to Medical Monitoring of Lung Function Decline and Pulmonary Exacerbations in Cystic Fibrosis

Leo L. Duan*, John P. Clancy and **Rhonda D. Szczesniak**, Cincinnati Children's Hospital Medical Center

73. CONTRIBUTED PAPERS: STATISTICAL METHODS IN EPIDEMIOLOGY

Grand Ballroom VII (3rd Floor)

Sponsor: ENAR

Chair: Ming Wang, The Pennsylvania State University

8:30

Comparing Parametric and Semi-Parametric Regression Models for a Skewed, Pooled Outcome

Emily M. Mitchell*, National Institute of Child Health and Human Development, National Institutes of Health

Robert H. Lyles, Emory University

Michelle Danaher, Neil J. Perkins and

Enrique F. Schisterman, National Institute of Child Health and Human Development, National Institutes of Health

8:45

Effect Modification and Design Sensitivity in Observational Studies

Jesse Y. Hsu*, Dylan S. Small and **Paul R. Rosenbaum**, University of Pennsylvania

9:00

Structural Nested Mean Model for Clustered Outcomes

Jiwei He* and Marshall Joffe, University of Pennsylvania

9:15

Flexible Models for Comparing Cumulative Effects of Time-dependent Exposures

Chenkun Wang*, Hai Liu and **Sujuan Gao**, Indiana University School of Medicine and Richard M. Fairbank School of Public Health

9:30

Instrumental Variables Estimation with Some Invalid Instruments and Its Application to Mendelian Randomization

Hyunseung Kang*, Anru Zhang, T. Tony Cai and Dylan S. Small, University of Pennsylvania

9:45

Variable Selection for Case-Cohort Studies with A Diverging Number of Parameters

Ai Ni and Jianwen Cai,

University of North Carolina, Chapel Hill

10:00

Weighted Model Selection for Fractional Polynomial Models

Michael D. Regier*, Ruoxin Zhang and **John Honaker**, West Virginia University

74. CONTRIBUTED PAPERS: ADAPTIVE DESIGNS AND RANDOMIZATION

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Qin Jiang, Pfizer Inc.

8:30

Two-Stage Adaptive Optimal Design with Fixed First Stage Sample Size

Adam Lane*, Cincinnati Children's Hospital Medical Center **Nancy Flournoy**, University of Missouri

8:45 Phase II/III Seamless Adaptive Dose Selection Design for Longitudinal Patient Data

Caitlyn Ellerbe*, Jordan Elm and Viswanathan Ramakrishnan, Medical University of South Carolina Bruce Turnbull, Cornell University Edward Jauch, Medical University of South Carolina Stacia DeSantis, University of Texas Health Sciences Valerie Durkalski, Medical University of South Carolina

9:00

The Use of Decreasingly Informative Priors in Adaptive Clinical Trial Designs

Roy T. Sabo*, Virginia Commonwealth University

An Adaptive Bayesian Dose Finding Approach for Drug Combinations with Drug-drug Interaction

Yang Yang*, University of Maryland, Baltimore County Hong-Bin Fang, Georgetown University Anindya Roy, University of Maryland, Baltimore County Ming Tan, Georgetown University

9:30

Dose Escalation with Over-dose and Under-dose Controls for Phase I/II Clinical Trial

Zheng Li* and **Michael Kutner**, Emory University **Ying Yuan**, University of Texas MD Anderson Cancer Center **Zhengjia Chen**, Emory University

9:45

An Adaptive Treatment Strategy for the Management of White-Nose Syndrome

Nick Meyer*, Eric Laber, Krishna Pacifici and **Brian Reich**, North Carolina State University

10:00

Floor Discussion

75. CONTRIBUTED PAPERS: NEXT GENERATION SEQUENCING

Grand Ballroom IX (3rd Floor)

Sponsor: ENAR

Chair: Prasad Patil, Johns Hopkins University

8:30

Genotype Calling and Haplotyping in Extended Families

Lun-Ching Chang, University of Pittsburgh **Bingshan Li**, Vanderbilt University **George C. Tseng** and **Wei Chen***, University of Pittsburgh

8:45

Meta-Analysis of Sequencing Studies Under Random-Effects Models

Zheng-Zheng Tang* and **Dan-Yu Lin**, University of North Carolina, Chapel Hill

9:00

Likelihood Based Complex Trait Association Testing for Arbitrary Depth Sequencing Data Song Yan* and Yun Li,

University of North Carolina, Chapel Hill

9:15

Design Issue and Power Calculation in RNA-seq Applications

Chien-Wei Lin* and **George C. Tseng**, University of Pittsburgh

9:30

A Simulation-based Comparative Study of the Relative Power of Family-based Association Tests

Jia Jia* and Daniel E. Weeks, University of Pittsburgh

9:45

A DNA Variant Caller Adapted to Assess Mitochondrial DNA Variation from Whole-Genome Sequencing Data

Jun Ding*, National Institute on Aging, National Institutes of Health

Carlo Sidore, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy

Osorio Meirelles, National Institute on Aging, National Institutes of Health

Mary Kate Wing, University of Michigan

Fabio Busonero, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy

Ramaiah Nagaraja, National Institute on Aging, National Institutes of Health

Francesco Cucca, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy

Goncalo R. Abecasis, University of Michigan **David Schlessinger**, National Institute on Aging, National Institutes of Health

10:00

Analysis of Sequence Data Under Multivariate Trait-Dependent Sampling

Ran Tao*, Donglin Zeng, Nora Franceschini and Kari E. North, University of North Carolina, Chapel Hill Eric Boerwinkle, University of Texas Health Science Center, Houston

Dan-Yu Lin, University of North Carolina, Chapel Hill

76. CONTRIBUTED PAPERS: STATISTICAL METHODS FOR SURVIVAL ANALYSIS

Chasseur Room (3rd Floor)

Sponsor: ENAR

Chair: Jennifer Sinnott, Harvard University

8:30

Distributional Properties and Peculiarities in HPP-Based Recurrent Event Models

Piaomu Liu* and **Edsel A. Peña**, University of South Carolina, Columbia

8:45

Vertical Modeling: Analysis of Multi-state Data with a Cured Fraction

Mioara Alina Nicolaie* and **Catherine Legrand**, Université catholique de Louvain

9:00

Sequential Stratification for Recurrent Event Outcomes

Abigail Smith* and **Douglas Shaubel**, University of Michigan

9:15

Random Survival Forests for Interval-censored Outcomes in the Presence of Imperfect Diagnostic Tests

Hui Xu*, Xiangdong Gu and **Raji Balasubramanian**, University of Massachusetts, Amherst

9:30

Analysis of MD STARnet Data

Ke Liu*, Ying Zhang, Paul Romitti, Soman Puzhankara and Kristin Caspers, University of Iowa Elinora Price, Jennifer Andrews and Chris Cunniff, University of Arizona

9:45

Time-Dependent Tree-Structured Survival Analysis with Unbiased Variable Selection

Meredith L. Wallace*, University of Pittsburgh

10:00

Quantile Regression in Semiparametric Varying-Coefficient Partially Linear Models for Right Censored Length-biased Data

Xuerong Chen, Georgetown University

Yeqian Liu* and Jianguo Sun, University of Missouri, Columbia

Yong Zhou, Chinese Academy of Sciences, Beijing

Tuesday, March 18

10:15 am - 10:30 am

Refreshment Break with Our Exhibitors

Grand Ballroom Foyer (3rd Floor)

Tuesday, March 18

10:30 am - 12:15 pm

77. PRESIDENTIAL INVITED ADDRESS

Grand Ballroom (3rd Floor)

Sponsor: ENAR

Organizer/Chair: DuBois Bowman, Columbia University

10:30

Introduction

10:35

Distinguished Student Paper Awards

10:45

A Significance Test for the Lasso

Robert J. Tibshirani, PhD, Department of Statistics and Health Research and Policy, Stanford University

Tuesday, March 18

1:45 pm - 3:30 pm

78. JABES INVITED SESSION

Grand Ballroom VIII (3rd Floor)

Sponsors: ENAR, ASA Section on Statistics and the Environment, ASA Government Statistics Section

Organizer: Montserrat Fuentes, North Carolina State University

Chair: Montserrat Fuentes, North Carolina State University

1:45

Estimating Velocity for Processive Motor Proteins with Random Detachment

John Hughes*, University of Minnesota

Shankar Shastry, William O. Hancock and John Fricks,

The Pennsylvania State University

Bayesian 2-stage Space-Time Mixture Modeling with Spatial Misalignment

Andrew B. Lawson*, Medical University of South Carolina Jungsoon Choi, Hangyang University, Korea Bo Cai, University of South Carolina, Columbia Monir Hossain, University of Cincinnati Russell Kirby, University of South Florida Jihong Liu, University of South Carolina, Columbia

2:35

Identifying Genes that are Differentially Expressed in Both of Two Independent Experiments

Megan Orr*, North Dakota State University
Peng Liu and Dan Nettleton, Iowa State University

3:00

A Bayesian Approach to Fitting Gibbs Processes with Temporal Random Effects Generalisations and Challenges

Ruth King, Janine B. Illian*, Stuart E. King and Glenna F. Nightingale, University of St Andrews Ditte K. Hendrichsen, Norwegian Institute for Nature Research

3:25

Floor Discussion

79. RECENT ADVANCES IN STATISTICAL METHODS FOR MISSING DATA

Grand Ballroom III (3rd Floor)

Sponsors: ENAR, ASA Biometrics Section, ASA Government Statistics Section

Organizer: Qi Long, Emory University

Chair: Pallavi Mishra-Kalyani, Emory University

1:45

Identification and Multiple Imputation of Implausible Gestational Ages for the Study of Preterm Births

Nathaniel Schenker*, National Center for Health Statistics, Centers for Disease Control and Prevention

2:10

Adjusting for Verification Bias in Estimation of Covariate-specific Areas under the ROC Curves

Xiao-Hua A. Zhou*, University of Washington
Danping Liu, Eunice Kennedy Shriver National Institute
of Child Health and Human Development,
National Institutes of Health

2:35

Multiple Imputation Via Flexible, Joint Models Jerome Reiter*, Duke University

3:00

On the Use of Box-Cox Transformation for Missing Data Imputation

Yulei He*, Don Malec and Nathaniel Schenker, National Center for Health Statistics, Centers for Disease Control and Prevention

3:25

Floor Discussion

80. BIG DATA METHODS IN BIOSTATISTICS

Grand Ballroom II (3rd Floor)

Sponsors: IMS, ASA Statistical Learning and Data Mining Section, ASA Biopharmaceutical Section

Organizer: Babak Shahbaba, University of California, Irvine **Chair: Babak Shahbaba**, University of California, Irvine

1:45

Some Post-GWAS Strategies for Identifying the Remaining Genetic Determinants Zhaoxia Yu*, University of California, Irvine

2.10

Interactive, Exploratory Visualization and Statistical Analysis of Genome-Scale Data Hector Corrada Bravo* and Florin Chelaru, University of Maryland, College Park

2:35

A Semiparametric Bayesian Model for Detecting Multiway Synchrony Among Neurons Babak Shahbaba*, Bo Zhou, Shiwei Lan and Hernando Ombao, University of California, Irvine David Moorman, Medical University of South Carolina Sam Behseta, Cal State Fullerton

3:00

Algebraic Properties and Fast Large Covariance Estimation

Xi Luo*, Brown University

3:25

Floor Discussion

81. STATISTICAL PREDICTION MODELS FOR MEDICAL DECISION MAKING

Grand Ballroom IV (3rd Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section

Organizer: Jing Ning, University of Texas

MD Anderson Cancer Center

Chair: Jing Ning, University of Texas MD Anderson Cancer Center

1:45

Dynamic Prediction of Survival Outcomes and Medical Decision Making

Xuelin Huang*, Sangbum Choi and **Jing Ning**, University of Texas MD Anderson Cancer Center

2:10

Statistical Prediction Models for Medical Decision Making

Michael W. Kattan*, Cleveland Clinic

2:35

ROC Analysis for Multiple Markers with Tree-based Classification

Mei-Cheng Wang*, Johns Hopkins University **Shanshan Li**, Indiana University Fairbanks School of Public Health

3:00

Efficient Evaluation of Risk Markers for Censored Failure Time Outcome: Analyses and Designs

Yingye Zheng*, Fred Hutchinson Cancer Research Center Tianxi Cai, Harvard School of Public Health

3:25

Floor Discussion

82. RECENT DEVELOPMENTS IN STATISTICAL GENETICS, GENOMICS, AND THEIR APPLICATIONS

Grand Ballroom V (3rd Floor)

Sponsors: ENAR, ASA Biometrics Section

Organizer: Mingyao Li, University of Pennsylvania School of Medicine

Chair: Mingyao Li, University of Pennsylvania School of Medicine

1:45

Joint Analysis of SNP and Gene Expression Data in Genetic Association Studies of Complex Diseases Using Causal Mediation Analysis

Yen-Tsung Huang, Brown University

Tyler VanderWeele and **Xihong Lin***, Harvard School of Public Health

2:10

The Magic of Score Statistics

Danyu Lin*, University of North Carolina, Chapel Hill

2:35

Assessing the Sensitivity of Genetic
Associations to Unmeasured Confounding
Under a Causal Framework

Nandita Mitra*, University of Pennsylvania Elizabeth Handorf, Fox Chase Cancer Center Peter Kanetsky and Steve Kawut, University of Pennsylvania

3:00

Robust and Powerful Sibpair Test for Rare Variant Association

Keng-Han Lin and **Sebastian Zoellner***, University of Michigan

3:25

Floor Discussion

83. IMPROVED STATISTICAL MODELING AND UNDERSTANDING OF GENE EXPRESSION AND TRANSCRIPTION REGULATION USING NEXT GENERATION SEQUENCING AND OTHER HIGH THROUGHPUT TECHNOLOGIES

Grand Ballroom VI (3rd Floor)

Sponsor: ENAR

Organizer: Michael Y. Zhu, Purdue University

Chair: Zhaohui Qin, Emory University

1:45

Deconvolution of Base Pair Level RNA-Seq Read Counts for Quantification of Transcript Expression Levels

Han Wu* and Yu Zhu, Purdue University

2:10

Accounting for Nuisance Covariates when using RNA-Seq Data to Identify Differentially Expressed Genes

Dan Nettleton* and Yet Nguyen, Iowa State University

2:35

Bayesian Models for Integrative Genomics

Marina Vannucci* and Alberto Cassese, Rice University Michele Guindani, University of Texas MD Anderson Cancer Center

Understanding Spatial Organizations of Chromosomes via Statistical Analysis of Hi-C Data

Ming Hu*, New York University Ke Deng, Tsinghua University Zhaohui Qin, Emory University Jun S. Liu, Harvard University

3:25

Floor Discussion

84. STATISTICAL CHALLENGES IN PUBLIC HEALTH RESEARCH AT THE CDC

Grand Ballroom VII (3rd Floor)

Sponsors: ENAR, ASA Government Statistics Section

Organizer: Simone Gray, Centers for Disease Control and Prevention

Chair: Dr. Craig Borkowf, Centers for Disease Control and Prevention

1:45

Exploring the Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control and Prevention Denise Bradford Optimal All Sample Sizes in Dual-Frame RDD For Control

2:10

Area Level Models for County Level Prevalence Estimates using Publically Available BRFSS Data

Betsy L. Cadwell*, Theodore J. Thompson and **Lawrence E. Barker**, Centers for Disease Control and Prevention

2:35

Multiple Imputation of Linked National Health Interview Survey and Medicare data files

Guangyu Zhang*, **Jennifer D. Parker** and **Nathaniel Schenker**, National Center for Health Statistics, Centers for Disease Control and Prevention

3:00

Using Longitudinal Data Analysis to Link Policy and Legislation to Public Health Impacts

Simone Gray*, Patricia Sweeney, Joseph Prejean, David W. Purcell, Aruna Surendera Babu, Brett Williams, Jenny Sewell and Jonathan Mermin, Centers for Disease Control and Prevention

3:25

Discussant: Craig Borkowf, Centers for Disease Control and Prevention

85. INNOVATIVE BAYESIAN NONPARAMETRICS IN BIOSTATISTICS

Grand Ballroom I (3rd Floor)

Sponsors: ENAR, ASA Section on Bayesian Statistical Science, ASA Biometrics Section

Organizer: Michael Daniels, University of Texas, Austin

Chair: Antonio Linero, University of Florida

1:45

Longitudinal Data Analysis using a Random Partition Model with Regression on Covariates

Gary L. Rosner*, Johns Hopkins University
Peter Mueller, University of Texas, Austin
Fernando Quintana, Pontificia Universidad Catolica
de Chile

Michael Maitland, University of Chicago

2:10

A Bayesian Feature Allocation Model for Tumor Heterogeneity

Peter Mueller*, University of Texas, Austin **Juhee Lee**, University of California, Santa Cruz **Yuan Ji**, NorthShore University Health System

2:35

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

Antonio Linero, University of Florida **Michael Daniels***, University of Texas, Austin

3:00

Bayesian Quantile Regression for Censored Data Brian J. Reich* and **Luke B. Smith**, North Carolina
State University

3:25

Floor Discussion

86. CONTRIBUTED PAPERS: NEW DEVELOPMENTS IN SURVIVAL ANALYSIS

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Adin-Cristian Andrei, Bluhm Cardiovascular Institute

1:45

A Local Agreement Index Based on Hazard Functions for Survival Outcomes

Tian Dai* and Ying Guo, Emory University

2:00

A Frailty Model for Bivariate Interval-censored Data Allowing Weak Dependence and Independence Naichen Wang* and Lianming Wang, University of South Carolina

Survival Analysis with Correlated Frailties and the Bootstrap

J. C. Loredo-Osti*, Memorial University

2:30

Semiparametric Methods to Contrast Restricted Mean Gap Times

Xu Shu ■ and Douglas E. Schaubel, University of Michigan

2:45

Extending the Peters-Belson Approach for Assessing Disparities to Right Censored Time-to-Event Outcomes

Lynn E. Eberly*, James S. Hodges, Kay Savik,
Olga Gurvich and Donna Z. Bliss, University of Minnesota

3:00

Consistency on Change-point Estimators on Hazard Regression Models with Long-term Survivors and Right Censoring

Wei Zhang* and Lianfen Qian, Florida Atlantic University

3:15

Nonparametric Estimation of Quantile Residual Life for Length-Biased Survival Data

Samia H. Lopa* and **Jong-Hyeon Jeong**, University of Pittsburgh

87. CONTRIBUTED PAPERS: CAUSAL INFERENCE

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Jessica G. Young, Harvard School of Public Health

1:45

Estimation of the Optimal Regime in Treatment of Prostate Cancer Recurrence from Observational Data using Flexible Weighting Models

Jincheng Shen*, Lu Wang and **Jeremy M.G. Taylor**, University of Michigan

2:00

A Simulation Study of a Multiply-Robust Approach for Causal Inference with Missing Covariates

Jia Zhan* and **Changyu Shen**, Indiana University School of Medicine

Lingling Li, Harvard Medical School

Xiaochun Li, Indiana University School of Medicine

2:15

Estimating Causal Treatment Effect for Complex Intervention Study Designs

Pan Wu*, Christiana Care Health System

2:30

Regression Analysis of Sequentially Randomized Trials through Artificial Randomization

Semhar B. Ogbagaber* and **Abdus S. Wahed**, University of Pittsburgh

2:45

Why Do Treatments Work Differently for Some People? Understanding Treatment-effect Mechanisms in Stratified Medicine

Sabine Landau*, King's College London Richard Emsley, Hanhua Liu and Graham Dunn, University of Manchester, United Kingdom

3:00

Inference for Surrogate Endpoint Validation in the Binary Case

Ionut Bebu*, Uniformed Services University of the Health Sciences

Thomas Mathew, University of Maryland Baltimore County **Brian K. Agan**, Uniformed Services University of the Health Sciences

3:15

Longitudinal Analyses of the Causal Path Between Multiple Sclerosis and Depression using Structural Equation Modeling

Douglas Gunzler*, Case Western Reserve University

88. CONTRIBUTED PAPERS: NON-PARAMETRIC ANALYSIS OF BIOMEDICAL DATA

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Leo Duan, Cincinnati Children's Hospital Medical Center

1:45

A Spatio-Temporal Nonparametric Bayesian Variable Selection Model of fMRI Data for Clustering Correlated Time Courses

Linlin Zhang*, Rice University **Michele Guindani**, University of Texas

MD Anderson Cancer Center **Marina Vannucci**, Rice University

2:00

Inferences about the Mean Area Under the Curve in Pre-Clinical Destructive Sampling Designs

Yi Shi*, State University of New York at Buffalo Rameela Chandrasekhar, Vanderbilt University Alan Hutson and Gregory Wilding, State University of New York at Buffalo

2:15

Investigating a Method for Testing a Hypothesis about the Ratio of Two Medians using Conover's Rank Transformation Method

Donald J. Schuirmann*, U.S. Food and Drug Administration

Restricted Confidence Intervals for Ordered Binary and Survival Data

Yongseok Park*, University of Pittsburgh Jeremy M G Taylor, University of Michigan

2:45

Novel Algorithm for Stratifying Patients into Survival Risk Groups using Mutation Data at Selected Genes

Irina Ostrovnaya*, Sean Devlin and Mithat Gönen, Memorial Sloan-Kettering Cancer Center

3:00

Two-sample Parameter Estimation using Empirical Characteristic Functions

Cornelis J. Potgieter*, Southern Methodist University Fred Lombard, North-West University, Potchefstroom, South Africa

3:15

Multiple Imputation Methods for Nonparametric **Inference on Cumulative Incidence with Missing Cause of Failure**

Minjung Lee*, Seoul National University James J. Dignam, University of Chicago Junhee Han, University of Arkansas, Fayetteville

89. CONTRIBUTED PAPERS: HIGH DIMENSIONAL **IMAGING DATA**

Grand Ballroom IX (3rd Floor)

Sponsor: ENAR

Chair: Feng Liu, University of North Carolina, Chapel Hill

1:45

A Parallel Group Independent Component Analysis Algorithm

Shaojie Chen*, Lei Huang, Huitong Qiu, Ani Eloyan and **Brian Caffo**, Johns Hopkins University

2:00

Ultra-high Dimensional Test Via Sparse Projections

Qiang Sun*, Hongtu Zhu and Joseph G. Ibrahim, University of North Carolina, Chapel Hill

2:15

Statistical Approaches for Exploring Brain **Connectivity with Multi-Modal Neuroimaging Data**

Phebe B. Kemmer* and Ying Guo Emory University F. DuBois Bowman, Columbia University

2:30

Spatially Regularizing High Angular Resolution Diffusion Imaging

Shangbang Rao*, Hongtu Zhu, Jian Cheng, Pew-Thian Yap and Joseph Ibrahim, University of North Carolina, Chapel Hill

2:45

Parametrization of White Matter Manifold-like **Structures using Principal Surfaces**

Chen Yue* and Vadim Zipunnikov, Johns Hopkins

Pierre-Louis Bazin, Max Planck Institute Dzung Pham and Daniel S. Reich, National Institute of Neurological Disorders and Stroke, National Institutes

Ciprian Crainiceanu and Brian Caffo, Johns Hopkins University

3:00

Predicting Enhancement in Magnetic Resonance Images using Scan Stratified Case Control Sampling

Gina-Maria Pomann*, North Carolina State University Elizabeth M. Sweeney, Johns Hopkins University Russel (Taki) Shinohara, University of Pennsylvania Ana-Maria Staicu, North Carolina State University Daniel S. Reich, National Institute of Neurological Disorders and Stroke, National Institutes of Health

3:15

Persistence Landscape of Functional Signal and Its Application to Epileptic Electroencaphalogram Data

Yuan Wang ■, University of Wisconsin, Madison Hernando Ombao, University of California, Irvine Moo K. Chung, University of Wisconsin, Madison

90. CONTRIBUTED PAPERS: NEW METHODS IN GENOMICS

Chasseur Room (3rd Floor)

Sponsor: ENAR

Chair: Emily Huang, Stony Brook University

1:45

Inference of Epigenetic Modulation of Gene Expression with Meta-pathway Analysis

Elana J. Fertig*, Johns Hopkins University Ana Markovic, University of California, San Francisco Ludmila V. Danilova, Daria A. Gaykalova, Leslie Cope, Christine H. Chung and Joseph A. Califano, Johns Hopkins University

Michael F. Ochs, The College of New Jersey

2:00

Integrative Modeling of Multiplatform
Genomic Data

Yen-Tsung Huang*, Brown University

2:15

The Most Informative Spacing Test as an Outlier and Subgroup Identification Method

Iwona Pawlikowska*, Gang Wu, Michael Edmonson, Tanja Gruber, Jinghui Zhang and Stan Pounds,

St. Jude Children's Research Hospital

2:30

Cross-Platform Gene Expression Profile Classification using Top-Scoring Pairs

Prasad Patil*, Johns Hopkins School of Public Health **Benjamin Haibe-Kains**, Institut de Recherches Clinques de Montreal

Jeffrey T. Leek, Johns Hopkins School of Public Health

2:45

A Survival Copula Mixture Model for Comparing Two Genomic Rank List

Yingying Wei* and Hongkai Ji, Johns Hopkins University

3:00

An Integrated Method for Detecting MicroRNA Target Proteins through Reverse-phase Protein Lysate Arrays

Jiawen Zhu*, Song Wu and **Jie Yang**, Stony Brook University

3:15

Testing in Metagenomic Profiling Studies with the Microbiota Regression-based Kernel Association Test (MiRKAT)

Ni Zhao* and **Michael C. Wu**, Fred Hutchinson Cancer Research Center

Tuesday, March 18

3:30 pm - 3:45 pm

Refreshment Break with Our Exhibitors

Grand Ballroom Foyer (3rd Floor)

Tuesday, March 18

3:45 pm - 5:30 pm

91. IMS MEDALLION LECTURE

Grand Ballroom VI (3rd Floor)

Sponsor: IMS

Chair: Daniel Scharfstein, Johns Hopkins University School of Public Health

3:45

Statistical Genetics and Genomics in the Big Data Era: Opportunities and Challenges in Research and Training

Xihong Lin*. Harvard School of Public Health

92. PARAMETRIC OR NONPARAMETRIC; WHICH IS THE ANSWER?

Grand Ballroom VII (3rd Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section, Non-Parametric

Organizer: Zhehui Luo, Michigan State University
Chair: Zhehui Luo, Michigan State University

3:45

Super Learning to Hedge Against Incorrect Inference from Arbitrary Parametric Assumptions in Marginal Structural Modeling

Romain Neugebauer*, Kaiser Permanente

4:10

Fitting ICU Data Complexity: Need for Innovative Prediction Tools Mortality Prediction by SuperLearner

Romain Pirracchio*, Hôpital Saint Louis, Paris, France Maya Petersen, University of California, Berkeley Sylvie Chevret, Hôpital Saint Louis, Paris, France Mark van der Laan, University of California, Berkeley

4:35

Sensitivity Analysis for Causal Inference under Unmeasured Confounding and Measurement Error Problems

Iván Díaz*, Johns Hopkins Bloomberg School of Public Health

Mark van der Laan, University of California, Berkeley

From Causal Roadmaps to Hedging Your Bets in the Adventures of Comparative Effectiveness Research: An Illustration using an Effect Modification Analysis of Star*D

Wenjing Zheng, University of California, Berkeley Zhehui Luo*, Michigan State University Mark van der Laan, University of California, Berkeley

5:25

Floor Discussion

93. CAUSAL INFERENCE IN HIGH DIMENSIONAL SETTINGS

Grand Ballroom II (3rd Floor)

Sponsors: ENAR, ASA Section on ASA Section on Statistics in Imaging

Organizer: Yenny WebbVargas, Johns Hopkins School of Public Health

Chair: Bruce Swihart, Johns Hopkins School of Public Health

3:45

Calibrated Observational Studies

David Madigan*, Columbia University

4:10

Connectivity and Causality in Brain Imaging

Martin A. Lindquist*, Johns Hopkins Bloomberg School of Public Health

4:35

Causal Inference for fMRI Time Series Data with Systematic Errors of Measurement in a Balanced On/Off Study of Social Evaluative Threat

Michael E. Sobel*, Columbia University

Martin A. Lindquist, Johns Hopkins Bloomberg School
of Public Health

5:00

Data Adaptive Target Parameters in Causal Inference

Alan E. Hubbard* and **Mark van der Laan**, University of California, Berkeley

5:25

Floor Discussion

94. ADVANCES IN TIME SERIES ANALYSIS OF BIOMEDICAL SIGNALS

Grand Ballroom III (3rd Floor)

Sponsors: ENAR, ASA Section on ASA Section on Statistics in Imaging

Organizer: Robert Krafty, Temple University **Chair: Sarah Ratcliffe**, University of Pennsylvania

3:45

Spatial Identification of Epileptic Brain Regions

Giovanni Motta*, Columbia University **Michael M. Haglund** and **Daryl Hochman**, Duke University

4:10

Time Series Analysis of Molecular Motor-Cargo Complexes

John Fricks*, The Pennsylvania State University

4:35

Penalized Multivariate Whittle Likelihood for Power Spectrum Estimation

Robert T. Krafty*, Temple University **William O. Collinge**, University of Pittsburgh

5:00

A Bayesian Model of Activation and Functional Connectivity for Event-Related fMRI

Wesley K. Thompson*, University of California, San Diego

5:25

Floor Discussion

95. FRONTIERS IN STATISTICAL GENETICS FOR COMPLEX TRAIT ASSOCIATION

Grand Ballroom V (3rd Floor)

Sponsor: ENAR

Organizer: Yijuan Hu, Emory University

Chair: Yijuan Hu, Emory University

3:45

Genetic Architecture of Complex Traits: Implications for Discovery, Prediction and Prevention

Nilanjan Chatterjee*, National Cancer Institute, National Institutes of Health JuHyun Park, Dongukk University, South Korea

4:10

Statistical Approaches for Rare-Variant Association Testing in Families

Michael P. Epstein*, Emory University

4:35

A Novel Collapsing Method for Rare Copy Number Variants

Jung-Ying Tzeng*, North Carolina State University Jin P. Szatkiewicz and Patrick F. Sullivan, University of North Carolina, Chapel Hill

Testing Association without Calling Genotypes Allows for Systematic Differences in Read Depth and Sequencing Error Rate between Cases and Controls

Glen A. Satten*, Centers for Disease Control and Prevention

Richard Johnston and **Peizhou Liao**, Emory University **Yu Jiang** and **Andrew S. Allen**, Duke University **Yijuan Hu**, Emory University

5:25

Floor Discussion

96. FUNCTIONAL DATA APPROACHES TO NEUROLOGICAL AND MENTAL DISEASE

Harborside Room A (4th Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section, ASA Section on Statistics in Imaging, ASA Section on Nonparametric Statistics

Organizer: Russell Shinohara, University of Pennsylvania

Chair: Adam Ciarleglio, New York University

3:45

Distance Splines, Nonparametric Functional Regression, and Multimodal Neuroimaging

Philip T. Reiss*, New York University and Nathan Kline Institute

Lei Huang, Johns Hopkins University **Huaihou Chen**, New York University **David L. Miller**, University of St Andrews

4:10

Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression

Jeff Goldsmith* and Tomoko Kitago, Columbia University

4:35

Flexible Concurrent Regression Models for Functional Data

Janet Kim, Ana-Maria Staicu* and Arnab Maity, North Carolina State University

5:00

Biosignatures Based on Imaging Data

Todd Ogden*, Columbia University **Adam Ciarleglio** and **Eva Petkova**, New York University **Thaddeus Tarpey**, Wright State University

5:25

Floor Discussion

97. MODELING NEUROLOGICAL DISEASES WITH IMAGING DATA

Harborside Room B (4th Floor)

Sponsors: ENAR, ASA Section on Statistics in Imaging, ASA Biometrics Section

Organizer: Jeff Goldsmith, Columbia University **Chair: Daniel B. Shin**, University of Pennsylvania

3:45

Developmental Disorders and Neuroimaging: Tools, Results and Issues

Brian S. Caffo*, Johns Hopkins Bloomberg School of Public Health

4:10

Learning Brain Connectivity Network of Depression via Multi-Attribute Canonical Correlation Graphs

Jian Kang*, Emory University
Han Liu, Princeton University
DuBois F. Bowman, Columbia University
Helen S. Mayberg, Emory University

4:35

Normalization Techniques for Statistical Inference from Magnetic Resonance Imaging

Russell T. Shinohara*, University of Pennsylvania
Elizabeth M. Sweeney, Johns Hopkins University
Jeff Goldsmith, Columbia University
Navid Shiee, Henry M. Jackson Foundation
Farrah J. Mateen, Harvard University
Peter A. Calabresi and Samson Jarso, Johns Hopkins
University

Dzung L. Pham, Henry M. Jackson Foundation **Daniel S. Reich**, National Institute of Neurological Disorders and Stroke, National Institutes of Health

Ciprian M. Crainiceanu, Johns Hopkins University

5:00

Voxel-wise Marginal Longitudinal Modelling of Brain Atrophy Data

Bryan Guillaume, University of Warwick and Université de Liège

Thomas E. Nichols*, University of Warwick **Lourens Waldorp**, University of Amsterdam

5:25

Floor Discussion

98. MAKING SENSE OF SENSORS: STATISTICAL METHODS FOR WEARABLE COMPUTING

Grand Ballroom I (3rd Floor)

Sponsor: ENAR

Organizer: Vadim Zipunnikov, Johns Hopkins Bloomberg **School** of Public Health

Chair: Sherri Rose, Harvard School of Medicine

3:45

ActiVis: An R Package for Visualizing Functional Actigraphy Data

Abbass Sharif*, University of Southern California **Juergen Symanzik**, Utah State University

4:10

From Humans to Monkeys and Back: Physical Activity Patterns in Humans and Primates

Vadim Zipunnikov*, Johns Hopkins University Jeff Goldsmith, Columbia University Haochang Shou and Ciprian Crainiceanu, Johns Hopkins University

4:35

Measurement Error Models for Physical Activity: Accelerometers and Self Report

John W. Staudenmayer*, University of Massachusetts, Amherst

5:00

Statistical Methods for Development and Temporal Organization of Repetitive Behavior

Nikolay Bliznyuk*, Isaac H. Duerr, Amber Muehleman and Mark Lewis, University of Florida

5:25

Floor Discussion

99. CONTRIBUTED PAPERS: SURVIVAL ANALYSIS

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Chair: J C. Loredo-Osti, Memorial University

3:45

A Semiparametric Bayesian Approach to Modelling Destructive Weighted Poisson Cure Rate Model

Arpita Chatterjee*, Georgia Southern University **Narayanaswamy Balakrishnan**, McMaster University

4:00

Support Vector Hazards Regression for Predicting Survival Outcome

Xiaoxi Liu ■, University of North Carolina, Chapel Hill **Yuanjia Wang**, Columbia University

Donglin Zeng, University of North Carolina, Chapel Hill

4:15

Semiparametric Extreme-value Regression Model for Analyzing Biomarker-defined Time-to-Event Noorie Hyun*, Donglin Zeng and David J. Couper, University of North Carolina, Chapel Hill

4:30

Spatial Extended Hazard Model with Application to South Carolina Prostate Cancer Data

Li Li*, University of South Carolina

4:45

Local Polynomial Density Estimation with Interval Censored Data

Derick R. Peterson*, University of Rochester **Mark J. van der Laan**, University of California, Berkeley

5:00

Stacking Survival Models

Andrew Wey*, John Connett and **Kyle Rudser**, University of Minnesota

5:15

Semiparametric Approach for Regression with Covariate Subject to Limit of Detection

Shengchun Kong* and **Bin Nan**, University of Michigan

100. CONTRIBUTED PAPERS: PERSONALIZED MEDICINE

Grand Ballroom VIII (3rd Floor)

Sponsor: ENAR

Chair: Susan Wei, University of North Carolina, Chapel Hill

3:45

Combining Biomarkers to Optimize Patient Treatment Recommendations

Chaeryon Kang*, Holly Janes and **Ying Huang**, Fred Hutchinson Cancer Research Center

4:00

Simple Approximations to Optimal Treatment Regimes in Randomized Clinical Trial Data

Jared C. Foster*, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

Bin Nan and Jeremy MG Taylor, University of Michigan

4:15

Regularized Outcome Weighted Subgroup Identification for Differential Treatment Effects

Yaoyao Xu ■, Menggang Yu, Yingqi Zhao, Quefeng Li and Jun Shao, University of Wisconsin, Madison

4:30

Finding Optimal Treatment Dose using Outcome Weighted Learning

Guanhua Chen*, Donglin Zeng and **Michael R. Kosorok**, University of North Carolina, Chapel Hill

Assessing the Heterogeneity of Treatment Effects via Potential Outcomes of Individual Patients

Zhiwei Zhang*, U.S. Food and Drug Administration **Chenguang Wang**, Johns Hopkins University School of Medicine

Lei Nie and **Guoxing Soon**, U.S. Food and Drug Administration

5:00

Identifying Subpopulations with Differential Risk Benefit Profiles

Junlong Li* and **Tianxi Cai**, Harvard School of Public Health

5:15

Active Learning Clinical Trials for Personalized Medicine

Yingqi Zhao*, University of Wisconsin, Madison **Stanislav Minsker**, Duke University **Guang Cheng**, Purdue University

101. CONTRIBUTED PAPERS: SPATIAL TEMPORAL MODELS

Grand Ballroom IX (3rd Floor)

Sponsor: ENAR

Chair: Helen Louise Powell, Johns Hopkins Bloomberg School of Public Health

3:45

A Bayesian Hierarchical Spatial Model for Dental Caries Assessment using Non-gaussian Markov Random Fields

Ick Hoon Jin* and Ying Yuan, University of Texas MD Anderson Cancer Center

Dipankar Bandyopadhyay, University of Minnesota

4:00

Spatial Analysis of Hotel Room Rate: Evidence from Star Rated Hotels in Beijing

Chuan Wang*, University of Florida **Yang Yang**, Temple University

4:15

A Sparse Reduced Rank Framework for Group Analysis of Functional Neuroimaging Data

Mihye Ahn*, Haipeng Shen, Weili Lin and **Hongtu Zhu**, University of North Carolina, Chapel Hill

4:30

Bayesian Hierarchical Models for Two-Phase Studies

Michelle E. Ross*, University of Pennsylvania **Jon Wakefield**, University of Washington

4:45

Spatially Varying Distributed Lag Models

Jongyu Baek*, Brisa Sanchez and **Veronica Berrocal**, University of Michigan

5:00

Efficient Data-Driven Knot Selection for Reduced Rank Spatial Models

Casey M. Jelsema* and Shyamal D. Peddada,

National Institute of Environmental Health Sciences, National Institutes of Health

5:15

Spatiotemporal Hurdle Models for Zero-inflated Count Data: Exploring Trends in Emergency Department Visits

Brian Neelon*, Duke University
Howard H. Chang and Qiang Ling, Emory University
Nicole Hastings, Duke University

102. CONTRIBUTED PAPERS: STATISTICAL METHODS IN CANCER APPLICATIONS

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Minsun Song, National Cancer Institute, National Institutes of Health

3:45

High-dimensional Nonparametric Surface
Estimation with Applications to Drug Combination
Studies

Xuerong Chen*, Hong-Bin Fang and **Ming Tan**, Georgetown University

4:00

Meta-analysis Sparse K-means Framework for Disease Subtype Discovery

Zhiguang Huo* and **George C. Tseng**, University of Pittsburgh

4:15

Identifying Driver Genes from Somatic Mutations: An Integrative Model-Based Approach

Keegan D. Korthauer* and **Christina Kendziorski**, University of Wisconsin, Madison

4:30

Additive Regression Model with Frailty on Semi-competing Risks Data

Jinheum Kim*, University of Suwon

Youn Nam Kim, Clinical Trials Center Severance Hospital **Chung Mo Nam**, Yonsei University College of Medicine

Investigating Herpes Simplex Virus Type 1 and KB Oral Cancer using Fractional Factorial Designs for Drug Combination Determination

Hongquan Xu, University of California, Los Angeles Jessica Jaynes*, University of Nevada, Las Vegas Xianting Ding, Shanghai Jiao Tong University Weng Kee Wong and Chih-Ming Ho, University of California, Los Angeles

5:00

Recursive Reclassification using Genomic Markers Sean Devlin*, Irina Ostrovnaya and Mithat Gönen, Memorial Sloan-Kettering Cancer Center

5:15

Impact of Copula Directional Specification on Multi-trial Evaluation of Surrogate Endpoints

Lindsay A. Renfro*, Mayo Clinic Hongwei Shang, University of Connecticut Daniel J. Sargent, Mayo Clinic

103. CONTRIBUTED PAPERS: DIAGNOSTIC AND SCREENING TESTS

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Le Kang, U.S. Food and Drug Administration

3:45

A New Diagnostic Accuracy Measure and Cut-off Point Selection Criterion

Tuochuan Dong*, State University of New York at Buffalo **Kristopher Attwood**, Roswell Park Cancer Institute **Lili Tian**, State University of New York at Buffalo

4:00

A Bayesian Missing Data Analysis Model for Estimating and Comparing Diagnostic Test Accuracy

Yi Hua*, University of Illinois, Urbana Champaign **Chenguang Wang**, Johns Hopkins University

4:15

Application of Latent Class Analysis for Screening Test of Adolescents Suicidal Behavior in United States (1991-2011 YRBSS Survey)

Hani Samawi*, Georgia Southern University
Ryan Butterfield, Odumosu and Butterfield, LLC.

4:30

Issues in Reviewing Precision Studies of Quantitative Measurement in Medical Device Submissions in FDA

Haiwen Shi and Qin Li*, U.S. Food and Drug Administration

4:45

On the Relationship between FROC and ROI Analyses for Detection-Localization Data

Andriy I. Bandos*, University of Pittsburgh **Nancy A. Obuchowski**, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University

5:00

Comparison of Diagnostic Performance Levels using Partial AUC

Hua Ma*, Andriy I. Bandos and **David Gur**, University of Pittsburgh

5:15

A Simplifying Reformulation of the Binormal Likelihood-Ratio Model

Stephen L. Hillis*, University of Iowa

104. CONTRIBUTED PAPERS: STATISTICAL METHODS FOR BIOMARKER DISCOVERY

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Kaushik Ghosh, University of Nevada, Las Vegas

3:45

New Class of Bivariate Weibull Distributions to Accommodate the Concordance Correlation Coefficient for Left-censored Data

Uthumporn Domthong* and **Vernon M. Chinchilli**, The Pennsylvania State Hershey College of Medicine

4:00

A Semi-parametric ROC Method for Assessing Biomarkers Subject to Measurement Errors and Limit of Detection

Le Kang*, Weijie Chen and **Lucas Tcheuko**, U.S. Food and Drug Administration

4:15

Clustering and DMR Identification Using Illumina Methylation Microarray

Jeff Campbell*, Duchwan Ryu, Varghese George, Hongyan Xu and Jaejik Kim, Georgia Regents University

4:30

Confidence Metrics for Identification of Proteins, Post-translational Modifications (PTMs) and Proteoforms

Naomi C. Brownstein* and **Nicolas L. Young**, Florida State University

4:45

Feature Selection for Ranked-based Classifiers Applied to Cancer Biomarker Discovery

Bahman Afsari*, Luigi Marchionni and **Elana J. Fertig**, Johns Hopkins University

Ulissess Braga-Neto, Texas A&M University **Donald Geman**, Johns Hopkins University

Meta-analysis of Regulatory Network on Major Depressive Disorder by Liquid Association Shuchang Liu*, Ying Ding and George C. Tseng, University of Pittsburgh

5:15

Modeling Physical Mixtures of Test Samples to Improve Class Prediction

Niels R. Hansen* and Martin Vincent,

University of Copenhagen

5:30-6:00 pm

ENAR BUSINESS MEETING (OPEN TO ALL ENAR MEMBERS)

Bristol Room (3rd Floor)

Wednesday, March 19

8:30 am - 10:15 am

105. MODERN SURVIVAL ANALYSIS IN OBSERVATIONAL STUDIES

Grand Ballroom IX (3rd Floor)

Sponsor: ENAR

Organizer: Kevin He, University of Michigan **Chair: Kevin He**, University of Michigan

8:30

More Efficient Estimator for Additive Hazard Model for Case-Cohort Studies

Jianwen Cai*, University of North Carolina, Chapel Hill Soyoung Kim, Fred Hutchinson Cancer Research Center David Couper, University of North Carolina, Chapel Hill

8:55

Contrasting Group-specific Cumulative Means Associated with Marked Recurrent Events in the Presence of a Terminating Event

Rick Ma, Regeneron Pharmaceuticals **Douglas E. Schaubel***, University of Michigan

9:20

Gateau Differential Based Boosting for Time-varying Survival Models

Yi Li*, Ji Zhu and Kevin He, University of Michigan

9:45

Screening for Osteoporosis in Postmenopausal Women: A Case Study in Interval Censored Competing Risks Data

Jason Fine*, University of North Carolina, Chapel Hill

10:10

Floor Discussion

★ = Presenter | **■** = Student Award Winner

106. RECENT DEVELOPMENT ON PERSONALIZED MEDICINE

Grand Ballroom II (3rd Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section, ASA Biopharmaceutical Section

Organizer: Rui Song, North Carolina State University **Chair: Rui Song**, North Carolina State University

8:30

Q-learning with L1 Regularization

Min Qian*, Columbia University

8:55

Personalized Medicine and Artificial Intelligence Michael R. Kosorok*,

University of North Carolina, Chapel Hill

9:20

Bayesian Methods for Dose-Finding with Targeted Agents in Early Phase Trials

Peter F. Thall*, University of Texas MD Anderson Cancer Center

9:45

Use of DNA Sequencing in Oncology Discovery Clinical Trials

Richard Simon*, National Cancer Institute, National Institutes of Health

10:10

Floor Discussion

107. CAUSAL INFERENCE IN THE ASSESSMENT OF SURROGATE MARKERS

Grand Ballroom III (3rd Floor)

Sponsors: ENAR, ASA Biopharmaceutical Section

Organizer: Michael R. Elliott, University of Michigan
Chair: Marshall Joffe, University of Pennsylvania
School of Medicine

8:30

Measures of Surrogacy using Principal Stratification

Jeremy MG Taylor*, Anna Conlon and **Michael R. Elliott**, University of Michigan

8:55

Assessing the Surrogacy Paradox

Michael R. Elliott*, Anna Conlon, Yun Li and Jeremy MG Taylor, University of Michigan

Direct Estimation of Joint Counterfactual Probabilities for the Assessment of Binary Surrogate Endpoints

Marc Buyse*, IDDI Inc.

Tomasz Burzykowski, Hasselt University, Belgium **Ariel Alonso**, Maastricht University, The Netherlands **Geert Molenberghs**, Leuven University, Belgium

9:45

Evaluation of Surrogates of Protection in Pre-clinical HIV Vaccine Trials

Dustin M. Long, West Virginia University **Michael G. Hudgens***, University of North Carolina, Chapel Hill

10:10

Floor Discussion

108. NEW DEVELOPMENTS IN MULTIPLE COMPARISONS PROCEDURES AND VARIABLE SELECTION

Grand Ballroom VIII (3rd Floor)

Sponsor: IMS

Organizer: Debashis Ghosh, The Pennsylvania State University

Chair: Debashis Ghosh, The Pennsylvania State University

8:30

False Discovery Control in Large-scale Spatial Multiple Testing

Wenguang Sun*, University of Southern California Brian Reich, North Carolina State University Tony Cai, University of Pennsylvania Michele Guindani, University of Texas MD Anderson Cancer Center Armin Schwartzman, North Carolina State University

8:55

Estimating the Evidence of Replicability in 'Omics' Research

Ruth Heller*, Tel-Aviv University Marina Bogomolov, Technion

9:20

Statistics Coauthor and Citation Network

Jiashun Jin*, Carnegie Mellon University Pengsheng Ji, University of Georgia

9:45

Adaptive Controls of FWER and FDR Under Block Dependence

Wenge Guo, New Jersey Institute of Technology **Sanat K. Sarkar***, Temple University

10:10

Floor Discussion

109. SPATIAL MODELS AND DYNAMICS APPLIED TO ENVIRONMENTAL SCIENCES AND PUBLIC HEALTH

Grand Ballroom V (3rd Floor)

Sponsors: ENAR, ASA Section on Bayesian Statistical Science, ASA Section on Statistics and the Environment

Organizer: Veronica J. Berrocal, University of Michigan **Chair: Howard Chang**, Emory University

8:30

A Nonparametric Bayesian Model for Spatial Point Processes with Application to Raccoon Rabies Spread

Gavino Puggioni*, University of Rhode Island **Luca Gerardo-Giorda**, Basque Center for Applied Mathematics, Spain

Lance Waller and Leslie Real, Emory University

8:55

The Role of Weather in Meningitis Spread in Africa

Yolanda Hagar*, University of Colorado, Boulder Mary Hayden, National Center of Atmospheric Research Abudulai Adams Forgor, War Memorial Hospital, Ghana Tom Hopson, National Center of Atmospheric Research Patricia Akweongo, University of Ghana Abraham Hodgson, Ghana Health Service Andrew Monoghan and Christine Wiedinmyer, National Center of Atmospheric Research Raj Pandya, University Corporation for Atmospheric Research

Vanja Dukic, University of Colorado, Boulder

9:20

A Spatial Point Process Model for Viral Infections

Murali Haran*, Joshua Goldstein, John Fricks and Francesca Chiaromonte, The Pennsylvania State University

9:45

Using Genetic Sequences to Infer Population Dynamics: Phylodynamic Analysis of HIV Transmission in SE Michigan

Edward L. Ionides*, University of Michigan

10:10

Floor Discussion

110. ADVANCES IN LONGITUDINAL STUDIES FOR PREDICTING CLINICAL OUTCOMES

Grand Ballroom VI (3rd Floor)

Sponsor: ENAR

Organizer: Abdus Sattar, Case Western Reserve University School of Medicine

Chair: Abdus Sattar, Case Western Reserve University School of Medicine

8:30

Multi-state Analysis of Serial Biomarkers, Non-Terminal, and Terminal Events Richard J. Cook*, University of Waterloo

8:55

Generalized Quasi-Likelihood Ratio Tests for Semiparametric Analysis of Covariance Models in Longitudinal Data

Jin Tang, University of Georgia Yehua Li*, Iowa State University

9:20

A Semi-parametric Longitudinal Model for Predicting Clinical Outcomes

Sanjoy Sinha*, Carleton University
Abdus Sattar, Case Western Reserve University
School of Medicine

9:45

Predicting Outcomes using Generalized Linear Mixed Models

Sophia Rabe-Hesketh*, University of California, Berkeley **Anders Skrondal**, Norwegian Institute of Public Health

10:10

Floor Discussion

111. CONTRIBUTED PAPERS: NEW DEVELOPMENTS IN EDUCATION, CONSULTING, AND HEALTH POLICY

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Sybil Nelson, Medical University of South Carolina

8:30

The Use of Analogies to Help Clinicians and Investigators Better Understand the Principles and Practice of Biostatistics

Martin L. Lesser*, Meredith Akerman and Nina Kohn, Feinstein Institute for Medical Research

8:45

Distributed Data, Confidentiality and Specimen Pooling: Using an Old Tool for New Challenges

Paramita Saha Chaudhuri*, Duke University

9:00

Analysis of Resting Metabolic Rate in a Latin Square Design with Repeated Measures

William D. Johnson*, Robbie Beyl and **Jeffrey Burton**, Pennington Biomedical Research Center

9:15

Small Area Estimation of Vaccination Coverage Rates by Combining Time Series and Cross Sectional Data

Santanu Pramanik* and **Ramanan Laxminarayan**, Public Health Foundation of India

9:30

Challenges using Survey Data to Estimate Problem Gambling Prevalence in the SEIG-MA Project

Edward J. Stanek III* and Rachel A. Volberg, University of Massachusetts, Amherst Robert J. Williams, University of Lethbridge, Alberta, Canada

9:45

Practical and Statistical Challenges in Developing an HIV Drug Resistance Surveillance Protocol Natalie Exner* and Marcello Pagano, Harvard University

10:10

Floor Discussion

112. CONTRIBUTED PAPERS: LATEST ADVANCES IN FUNCTIONAL AND IMAGING DATA ANALYSIS

Grand Ballroom I (3rd Floor)

Sponsor: ENAR

Chair: Jaroslaw Harezlak, Indiana University Fairbanks School of Public Health

8:30

Online Functional Principal Component Analysis David Degras*, DePaul University

8:45

Modeling Binary Functional Data with Application to Animal Husbandry

Jan Gertheiss*, University of Göttingen
Verena Maier, Ludwig-Maximilians-University Munich
Engel F. Hessel, University of Göttingen
Ana-Maria Staicu, North Carolina State University

Using Regression Models to Infer Active Connections in Cortex

Mark A. Reimers*, Virginia Commonwealth University

9:15

Parametric Modulation of Functional MRI Signals: A Mixed Effect Model Approach

Lei Huang* and **Martin Lindquist**, Johns Hopkins University

Philip Reiss, New York University Child Study Center **Ciprian Crainiceanu**, Johns Hopkins University

9:30

Pre-processing of the Longitudinal Structural Brain Imaging Data: A Case Study

Jacek Urbanek* and Jaroslaw Harezlak, Indiana University Fairbanks School of Public Health Elizabeth M. Sweeney, Johns Hopkins Bloomberg School of Public Health

9:45

Clustering of Ultra High Dimensional Longitudinal Data

Seonjoo Lee*, Columbia University
Vadim Zipunnikov, Johns Hopkins University
Navid Shiee, Amazon Inc.

Daniel S. Reich, National Institute of Neurological Disorders and Stroke, National Institutes of Health **Dzung L. Pham**, The Henry Jackson Foundation **Brian S. Caffo** and **Ciprian M. Crainiceanu**, Johns Hopkins University

10:00

Effects of Registration on Statistical Analysis of MRI Data

Ani Eloyan* and **Haochang Shou**, Johns Hopkins University

Russell T. Shinohara, University of Pennsylvania **Elizabeth M. Sweeney** and **Mary B. Nebel**, Johns Hopkins University

Daniel S. Reich, National Institute of Neurological Disorders and Stroke, National Institutes of Health **Martin A. Lindquist** and **Ciprian M. Crainiceanu**, Johns Hopkins University

113. CONTRIBUTED PAPERS: BAYESIAN METHODS

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Chair: Kassie Fronczyk, Rice University

8:30

Joint Models for Multivariate Longitudinal Measurements and a Binary Event: An Application to a Fetal Growth Study with Longitudinal Ultrasound Measurements

Sungduk Kim* and **Paul S. Albert**, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

8:45

Bayesian Peer Calibration Based on Network Position with Application to Alcohol Use

Miles Q. Ott*, Carleton College Joseph H. Hogan, Brown University Krista J. Gile, University of Massachusetts, Amherst Crystal Linkletter, Mathworks Nancy P. Barnett, Brown University

9:00

Modeling Long-term HIV Dynamics with Left Censoring Measurements

Tao Lu*, State University of New York at Albany

9:15

A Bayesian Missing Data Framework for Generalized Multiple Outcome Mixed Treatment Comparisons

Hwanhee Hong*, Haitao Chu, Jing Zhang and Bradley P. Carlin, University of Minnesota

9:30

Clustering Significant Regions of Brain Activation Using fMRI Meta Data

Meredith Ray*, University of South Carolina **Hongmei Zhang**, University of Memphis **Jian Kang**, Emory University

9:45

Bayesian Factorizations of Big Sparse Tensors

Jing Zhou ■, University of North Carolina, Chapel Hill Anirban Bhattacharya, Duke University Amy H. Herring, University of North Carolina, Chapel Hill David B. Dunson, Duke University

10:00

Floor Discussion

114. CONTRIBUTED PAPERS: MULTIVARIATE SURVIVAL ANALYSIS

Grand Ballroom VII (3rd Floor)

Sponsor: ENAR

Chair: Hui Xu, University of Massachusetts, Amherst

8:30

Inference on Quantile Residual Life for Semi-competing Risks Data

Wen-Chi Wu* and Jong-Hyeon Jeong, University of Pittsburgh

8:45

Model Selection and Goodness-of-Fit Test Procedures for Copula Models

Antai Wang*, New Jersey Institute of Technology

9:00

Analysis of Recurrent Events Data based on Accelerated Recurrence Time Model

Xiaoyan Sun*, Limin Peng, Yijian Huang and Amita K. Manatunga, Emory University Hui-Chuan Lai, University of Wisconsin, Madison

9:15

Simple Two-stage Semiparametric Estimation of the Positive Stable Shared Frailty Model

Yu Han*, Changyong Feng and Xin Tu, University of Rochester

9:30

Nonparametric Estimation of Joint Distribution of Time from Umbilical Cord Blood Transplantation to First Infection and Gap Times between Recurrent Infections

Chi Hyun Lee ■ and Xianghua Luo, University of Minnesota Chiung-Yu Huang, Johns Hopkins University Todd DeFor, University of Minnesota

9:45

Safe Trials for Equivalence of Two Survival Functions: Alternative to the Tests under Proportional Hazards

Elvis Martinez*, Florida State University
Wenting Wang, University of Texas
MD Anderson Cancer Center
Debajyoti Sinha, Florida State University
Stuart Lipsitz, Harvard Medical School

Richard Chappell, University of Wisconsin, Madison

10:00

Composite Likelihood For Joint Analysis of Multiple Multistate Processes via Copulas

Liqun Diao*, University of Rochester **Richard J. Cook**, University of Waterloo

115. CONTRIBUTED PAPERS: STATISTICAL ANALYSIS IN THE PRESENCE OF MISSING DATA

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Jiwei Zhao, University of Waterloo

8:30

Variable Selection and Prediction with Incomplete High-Dimensional Data

Ying Liu*, Yang Feng, Yuanjia Wang and Melanie Wall, Columbia University

8:45

Quantile Regression in the Presence of Monotone Missingness with Sensitivity Analysis Minzhao Liu*, University of Florida Michael Daniels, University of Texas, Austin

9:00

Improving the Robustness of Doubly Robust Estimators

Peisong Han*, University of Waterloo **Lu Wang**, University of Michigan

9:15

Nonparametric MANOVA Approaches for Non-Normal Multivariate Outcomes with Missing Values Fanyin He*, Sati Mazumdar, Gong Tang and Stewart J. Anderson, University of Pittsburgh

9:30

Model Independent Diagnostic for Multiple Imputations

Irina Bondarenko* and Trivellore Raghunathan, University of Michigan

9:45

Simple Relaxed Conditional Likelihood

John J. Hanfelt and Lijia Wang*, Emory University

10:00

Floor Discussion

116. CONTRIBUTED PAPERS: TOOLS FOR LONGITUDINAL DATA ANALYSIS

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Ozgur Asar, Lancaster Medical School

8:30

Longitudinal Outcome Evaluation of a Pilot Study of Provider Delivered Care Management

Hsiu-Ching Chang*, BlueCross BlueShield of Michigan

8:45

Properties and Applications of Multivariate Antedependence Models

Chulmin Kim*, University of West Georgia

9:00

Antedependence Models for Skew Normal Longitudinal Data

Shu-Ching Chang* and **Dale Zimmerman**, University of Iowa

9:15

Bayesian Shared Parameter Models for Dyadic Longitudinal Data with Intermittent Dropouts

Jaeil Ahn*, Georgetown University

Ying Yuan and **Wenyi Wang**, University of Texas MD Anderson Cancer Center

9:30

An R Package for Sensitivity Analysis on Longitudinal Data with Non-Ignorable Intermittent Missingness

Jing Wang*, The George Washington University **Chenguang Wang**, Johns Hopkins University

9:45

A Novel Mixture Model Estimates Time to Onset of Disease or Drug Effects and its Association with Key Covariates

Mengyuan Xu*, National Institute of Environmental Health Sciences, National Institutes of Health

Yin Yao, The National Institute of Mental Health, National Institutes of Health

10:00

A Two-part Mixture Model for Zero-inflated Longitudinal Measurements with Heterogeneous Random Effects

Huirong Zhu*, Sheng Luo and **Stacia M. DeSantis**, University of Texas Health Science Center at Houston

117. CONTRIBUTED PAPERS: ANALYSIS OF DATA FROM CLINICAL TRIALS

Chasseur Room (3rd Floor)

Sponsor: ENAR

Chair: Adam Lane, Cincinnati Children's Hospital Medical Center

8:30

Finding the Optimal Allocation in Sequential Binary Response Experiments with Two Possibly Correlated Endpoints

Lu Wang* and **Hongjian Zhu**, University of Texas Health Science Center at Houston

8:45

A General Class of Correlation Coefficients between Binary and Continuous Variables for the 2 × 2 Crossover Design

Luojun Wang* and **Vernon Chinchilli**, Penn State Hershey College of Medicine

9:00

Weighted and Replicated Estimator for Comparing Dynamic Treatment Regimens with a Binary Outcome using SMART Data: Practical Issues and a Simulations-based Sample Size Calculator

Kelley M. Kidwell* and **Inbal Nahum-Shani**, University of Michigan

Connie Kasari, University of California, Los Angeles **Daniel Almirall**, University of Michigan

9:15

Marginal Meta Analysis for Combining Randomized Clinical Trials with Rare Binary Outcomes — Reevaluating the Safety Concern of Avandia

Yi Huang* and **Elande Baro**, University of Maryland, Baltimore County

Guoxing Soon, U.S. Food and Drug Administration

9:30

Design Issues and their Effect on Power and Sampling Frequency Requirements for N-of-1 Clinical Trials

Yanpin Wang*, Andrew Viterbi and **Nicholas Schork**, Scripps Health

9:45

Using Internal Pilots to Design Cluster Randomized Trials with Unequal Cluster Sizes

Ashutosh Ranjan*, University of Alabama, Birmingham Christopher S. Coffey, University of Iowa Leslie A. McClure, University of Alabama, Birmingham

10:00

Designing Balanced Patient-specific Treatment Stimuli for Post-stroke Language Interventions

Minming Li*, Edward J. Stanek III and Jacquie Kurland, University of Massachusetts, Amherst

Wednesday, March 19

10:15 am - 10:30 am

Refreshment Break with Our Exhibitors

Grand Ballroom Foyer (3rd Floor)

Wednesday, March 19

10:30 am - 12:15 pm

118. HUMAN HEALTH AND ENVIRONMENTAL STATISTICS AT THE U.S. EPA'S OFFICE OF RESEARCH AND DEVELOPMENT

Grand Ballroom V (3rd Floor)

Sponsors: ENAR, ASA Section on Statistics and the Environment, ASA Government Statistic Section

Organizer: James L. Crooks, U.S. Environmental Protection Agency

Chair: Ana Rappold, U.S. Environmental Protection Agency

10:30

Exploring Chemically Induced Change in Neuronal Networks

Diana Hall*, University of North Carolina, Chapel Hill

10:50

Development and Evaluation of Two Reduced Form Versions of a Deterministic Air Quality Model for Ozone and Particulate Matter

Kristen M. Foley*, Sergey L. Napelenok, Sharon B. Phillips and **Carey Jang**, U.S. Environmental Protection Agency

11:10

Fully Bayesian Analysis of High-Throughput Targeted Metabolomics Assays

James L. Crooks*, Denise K. MacMillan and Jane E. Gallagher, U.S. Environmental Protection Agency

11:30

Implications of Nonlinear Concentration Response Curve for Ozone related Mortality on Risk Assessment

Ana G. Rappold* and **James L. Crooks**, U.S. Environmental Protection Agency

11:50

Modeling the Effect of Temperature on Ozone-Related Mortality

Ander Wilson*, North Carolina State University **Ana G. Rappold** and **Lucas M. Neas**, U.S. Environmental Protection Agency

Brian J. Reich, North Carolina State University

119. POWER ANALYSIS FOR MIXED MODELS: WHERE WE STAND

Grand Ballroom III (3rd Floor)

Sponsor: ENAR

Organizer: Yueh-Yun Chi, University of Florida Chair: Keith E. Muller, University of Florida

10:30

Introduction

Keith Muller*, University of Florida

10:35

Quick (but Accurate) Power and Precision Approximation using Generalized Linear Mixed Model Software

Walter W. Stroup*, University of Nebraska, Lincoln

10:55

Sample Size for Fixed Effect Inference in Longitudinal and Multilevel Mixed Models Yueh-Yun Chi*, University of Florida

11:15

Optimal Combination of Number of Participants and Number of Repeated Measurements in Longitudinal Studies with Time-Varying Exposure

Donna Spiegelman*, Harvard School of Public Health **Jose Barrera-Gomez** and **Xavier Basagana**, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain

11:35

Panel Discussion

120. NEW DEVELOPMENTS IN ESTIMATING CAUSAL EFFECTS OF TIME-VARYING TREATMENTS

Grand Ballroom II (3rd Floor)

Sponsor: ENAR

Organizer: Edward Kennedy, University of Pennsylvania School of Medicine

Chair: Edward Kennedy, University of Pennsylvania School of Medicine

10:30

Double Robust Estimation Strategies for Longitudinal Censored Data

Mireille E. Schnitzer*, Université de Montréal Judith J. Lok, Harvard School of Public Health

10:55

Nonparametric Smoothing for Causal Inference with Continuous Treatments

Edward H. Kennedy* and **Marshall M. Joffe**, University of Pennsylvania

Overcoming Challenges Associated with Artificial **Censoring in Structural Nested Failure Time Models**

David M. Vock*, University of Minnesota

11:45

Inference for Causal Effects of Time-varying Treatment in the Presence of Selective Measurement Error

Marshall M. Joffe*, University of Pennsylvania

12:10

Floor Discussion

121. INSIDE THE BIOSTATISTICAL **COLLABORATIVE PROCESS**

Grand Ballroom VI (3rd Floor)

Sponsors: ENAR, ASA Mental Health Statistics Section

Organizer: Bhramar Mukherjee and Brisa Sanchez, University of Michigan

Chair: Brisa Sánchez, University of Michigan

10:30

Mass Spectrometry-based Metabolomics to Understand Human Health and Disease

Andrew Patterson*, The Pennsylvania State University

11:00

Kernel Machines for Metabolomics Data Analysis Xiang Zhan, Debashis Ghosh* and Andrew Patterson, The Pennsylvania State University

11:45

Discussant: Wei Pan, University of Minnesota

122. CONTRIBUTED PAPERS: NON-PARAMETRIC METHODS

Atlantic Room (3rd Floor)

Sponsor: ENAR

Chair: Kuang-Yao Lee, Yale University

10:30

On Inverse Probability Weighted Estimators in the Presence of Interference

Lan Liu*, Michael G. Hudgens and Sylvia Becker-Dreps, University of North Carolina, Chapel Hill

10:45

Association of Time to Recovery and a Subsequent Depressive or Mania Episode Xiaotian Chen* and Yu Cheng, University of Pittsburgh

11:00

Bayesian Doubly Semiparametric Proportional Hazards Model with Commensurate Priors that Facilitate Borrowing from a Nonexchangeable Data Source

Thomas A. Murray*, University of Minnesota Brian P. Hobbs, University of Texas MD Anderson Cancer Center Bradley P. Carlin, University of Minnesota

11:15

Bivariate Penalized Splines for Regression Ming-Jun Lai and Lily Wang*, University of Georgia

11:30

Signed Rank with Responses Missing at Random **Huybrechts F. Bindele***, University of South Alabama

Combination of Nonparametric Regression Based Classifiers for Breast Tissue Diagnosis from Raman Spectra

Jing Guo*, Richard Charnigo and Cidambi Srinivasan, University of Kentucky

Ramachandra Dasari, Massachusetts Institute of Technology

Maryann Fitzmaurice, Case Western Reserve University Abigail Haka, Cornell University

12:00

Gene-Trait Similarity U Test

Changshuai Wei* and Qing Lu, Michigan State University

123. CONTRIBUTED PAPERS: VARIABLE SUBSET SELECTION

Chasseur Room (3rd Floor)

Sponsor: ENAR

Chair: Sunyoung Shin, University of North Carolina, Chapel Hill

10:30

Time-varying Networks Estimation and Dynamic Model Selection

Xinxin Shu* and Annie Qu, University of Illinois, Urbana-Champaign

10:45

Simultaneous Variable Selection for Joint Models of Longitudinal and Survival Outcomes

Zangdong He*, Indiana University School of Medicine and Fairbanks School of Public Health

Wanzhu Tu, Indiana University School of Medicine, Fairbanks School of Public Health and Regenstrief Institute, Inc.

Sijian Wang, University of Wisconsin, Madison

Haoda Fu, Eli Lilly & Company

Zhangsheng Yu, Indiana University School of Medicine and Fairbanks School of Public Health

11:00

Local Feature Selection in Varying-Coefficient Models

Lan Xue, Oregon State University

Xinxin Shu and Peibei Shi*,

University of Illinois, Urbana-Champaign

Colin O. Wu, National Heart, Lung and Blood Institute, National Institutes of Health

Annie Qu, University of Illinois, Urbana-Champaign

11:15

Structured Feature Selection for Longitudinal Biomarker Data

Anthony V. Pileggi* and **Brent A. Johnson**, Emory University

DuBois Bowman, Columbia University

11:30

Parsimonious Covariate and Conditional-Mean Model Selection with Multiple Candidate Predictors Greg DiRienzo*, State University of New York at Albany

11:45

Floor Discussion

124. CONTRIBUTED PAPERS: HIGH DIMENSIONAL DATA IN GENETICS AND GENOMICS

Grand Ballroom VIII (3rd Floor)

Sponsor: ENAR

Chair: Jun Ding, National Institute on Aging, National Institutes of Health

10:30

Strategies for Developing Prediction Models from Genome-wide Association Studies

Jincao Wu*, Ruth M. Pfeiffer and Mitchell H. Gail, National Cancer Institute, National Institutes of Health

10:45

A Penalized Multi-trait Mixed Model for Association Mapping in Pedigree-based GWAS

Jin Liu*, University of Illinois, Chicago

Can Yang, Yale University

Xingjie Shi, Shanghai University of Finance and

Economics, China

Cong Li, Yale University

Jian Huang, University of Iowa

Hongyu Zhao and Shuangge Ma, Yale University

11:00

A Mixture of Experts Approach for the Analysis of SNP Data

Julia Schiffner* and Holger Schwender,

Heinrich-Heine-Universitaet Duesseldorf

11:15

Joint Estimation of Multiple Dependent Gaussian Graphical Models

Yuying Xie ■, Yufeng Liu and William Valdar, University of North Carolina, Chapel Hill

11:30

Gateau Differential Boosting for Analysis of Gene Effects and Gene-gene Interaction

Kevin He*, Yi Li and Ji Zhu, University of Michigan

11:45

Concordant Integrative Analysis of Multiple Gene Expression Data Sets

Fanni Zhang* and **Yinglei Lai**, The George Washington University

12:00

D_CDF Test of Negative Log Transformed P-values with Application to Genetic Pathway Analysis

Hongying Dai*, Children's Mercy Hospital **Richard Charnigo**, University of Kentucky

125. CONTRIBUTED PAPERS: TOOLS FOR SURVIVAL ANALYSIS

Grand Ballroom IV (3rd Floor)

Sponsor: ENAR

Chair: Jonathan Yabes, University of Pittsburgh

10:30

Robust Prediction of Cumulative Incidence Function under Non-proportional Subdistribution Hazards

Qing Liu* and Chung-Chou H Chang,

University of Pittsburgh

10:45

Dynamics Model of Diabetes Disease Progression to End-Stage-Renal Disease and Mortality Ying Jiang, Nathaniel Osgood, Roland Dyck and Hyun J. Lim*, University of Saskatchewan, Canada

11:00

On the Consistency of Maximum Likelihood Estimators for the Three Parameter Lognormal Distribution

HaiYing Wang*, University of New Hampshire **Nancy Flournoy**, University of Missouri, Columbia

11:15

Regression When the Predictor may be Censored David Oakes*, University of Rochester

11:30

Nonparametric Discrete Survival Function Estimation with Uncertain Endpoints using an Internal Validation Subsample

Jarcy Zee* and Sharon X. Xie,

University of Pennsylvania Perelman School of Medicine

11:45

A New Flexible Association Measure for Semi-competing Risks

Jing Yang* and Limin Peng, Emory University

12:00

Pseudo-value Approach for Comparing Survival Medians for Dependent Data

Kwang Woo Ahn*, Medical College of Wisconsin **Franco Mendolia**, German Aerospace Center, Institute of Aerospace Medicine, Germany

126. CONTRIBUTED PAPERS: META-ANALYSIS

Grand Ballroom I (3rd Floor)

Sponsor: ENAR

Chair: Sujin Kim, Savannah State University

10:30

Estimation of Treatment Effects in Matched-Pair Cluster Randomized Trials by Calibrating Covariate Imbalance Between Clusters

Zhenke Wu* and Constantine E. Frangakis, Johns Hopkins Bloomberg School of Public Health Thomas A. Louis, Johns Hopkins Bloomberg School of Public Health and U.S. Census Bureau Daniel O. Scharfstein, Johns Hopkins Bloomberg School of Public Health

10:45

A Unification of Models for Meta-analysis of Diagnostic Accuracy Studies Without a Gold Standard

Yulun Liu* and Yong Chen, University of Texas Health Science Center at Houston Haitao Chu, University of Minnesota

11:00

Meta-analysis Methods for Combining Multiple Expression Profiles: Comparisons, Statistical Characterization and an Application Guideline Lun-Ching Chang*, Hui-Min Lin and George C. Tseng, University of Pittsburgh

11:15

Investigation on Adaptively Weighted Evidence Aggregation Meta-analysis Methods Shaowu Tang* and George C. Tseng, University of Pittsburgh

11:30

Bayesian Hierarchical Models for Network Metaanalysis Incorporating Nonignorable Missingness Jing Zhang , Haitao Chu, Hwanhee Hong and James D. Neaton, University of Minnesota Guoxing Greg Soon, U.S. Food and Drug Administration Beth A. Virnig and Bradley P. Carlin, University of Minnesota

11:45

Plug-in Tests for Non-equivalence of Means of Independent Normal Populations Sungwoo Choi* and Junyong Park, University of Maryland Baltimore County

127. CONTRIBUTED PAPERS: STATISTICAL METHODS FOR HANDLING MISSING DATA

Grand Ballroom X (3rd Floor)

Sponsor: ENAR

Chair: Victoria Liublinska, Harvard University

10:30

Censoring Adjustment Methods for Source Apportionment Models

Jenna R. Krall*, Johns Hopkins Bloomberg School of Public Health

Charles H. Simpson, Havoc Engineering

Roger D. Peng, Johns Hopkins Bloomberg

School of Public Health

10:45

A Hot Deck Imputation Procedure for Multiply Imputing Nonignorable Missing Data: The Proxy Pattern-Mixture Hot Deck

Danielle M. Sullivan* and Rebecca R. Andridge,

The Ohio State University

11:00

Analysis of Incomplete Derived Responses: Multiple Imputation for Body Mass Index Data

Jiwei Zhao*, Richard Cook and **Changbao Wu**, University of Waterloo

11:15

Longitudinal Latent Variable Models Given Incompletely Observed Biomarkers and Covariates

Chunfeng Ren* and **Yongyun Shin**, Virginia Commonwealth University

11:30

Clustering Incomplete Data using Normal Mixture Models

Chantal Larose*, Dipak Dey and **Ofer Harel**, University of Connecticut

11:45

Causal Inference in Longitudinal Studies with Dropout and Truncation by Death

Michelle Shardell*, University of Maryland Gregory Hicks, University of Delaware Luigi Ferrucci, National Institute on Aging, National Institutes of Health

12:00

The Effect of Imputing a Complex Outcome on the Rejection Rate of Pearson's Chi-Square Test of Independence and a Permutation-Based Correction Factor

Megan J. Olson Hunt* and **Gong Tang**, University of Pittsburgh

128. CONTRIBUTED PAPERS: LONGITUDINAL DATA ANALYSIS

Bristol Room (3rd Floor)

Sponsor: ENAR

Chair: Douglas Gunzler, Case Western Reserve University

10:30

Generalized p-Values for Testing Zero-Variance Components in Linear Mixed-effects Models

Haiyan Su*, Montclair State University Xinmin Li, ShanDong University of Technology Hua Liang, The George Washington University Hulin Wu, University of Rochester

10:45

Sufficient Dimension Reduction for Longitudinal Data

Xuan Bi* and **Annie Qu**, University of Illinois, Urbana-Champaign

11:00

Real Time Monitoring of Progression Towards Renal Failure in Primary Care Patients

Peter J. Diggle, Lancaster University, United Kingdom and University of Liverpool, United Kingdom Ines Sousa, University of Minho, Portugal Ozgur Asar*, Lancaster University, United Kingdom

11:15

AR(1) Latent Class Models for Longitudinal Count Data

Nicholas Henderson* and Paul Rathouz,

University of Wisconsin, Madison

11:30

Time-varying Coefficient Models to Identify and Model Time-clusters in Recurrent Event Data

Xiaoxue Li*, Stewart J. Anderson and **Saul Shiffman**, University of Pittsburgh

11:45

Identifying Multiple Change-points in a Linear Mixed Effects Model

Yinglei Lai*, The George Washington University
Paul S. Albert, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health

12:00

Regression Analysis of Mixed Recurrent-event and Panel-count Data

Liang Zhu*, St. Jude Children's Research Hospital Xingwei Tong, Beijing Normal University Jianguo Sun, University of Missouri, Columbia Kumar Srivastava, St. Jude Children's Research Hospital Wendy Leisenring, Fred Hutchinson Cancer Research Center

Leslie Robinson, St. Jude Children's Research Hospital

129. CONTRIBUTED PAPERS: PREDICTION AND PROGNOSTIC MODELING

Grand Ballroom VII (3rd Floor)

Sponsor: ENAR

Chair: Kellie J. Archer, Virginia Commonwealth University

10:30

Predicting Probabilities of Competing Risk Outcomes under Informative Censoring, with Application to Safety and Efficacy of Initial ART in HIV-Positive Patients

Judith J. Lok* and **Michael D. Hughes**, Harvard School of Public Health

10:45

The Optimality of a Pseudo-Likelihood Approach to Bayesian Classification

Josephine K. Asafu-Adjei* and Rebecca A. Betensky, Harvard School of Public Health

11:00

Local Likelihood-Based Estimation for Quantile Classification in Binary Regression Models

John D. Rice* and **Jeremy M. G. Taylor**, University of Michigan

11:15

Combination of Longitudinal Biomarkers in Predicting Binary Events with Application in a Fetal Growth Study

Danping Liu* and **Paul S. Albert**, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

11:30

Predictive Accuracy of Time-dependent Markers for Survival Outcomes

Li Chen*, University of Kentucky

Donglin Zeng and **Danyu Lin**, University of North Carolina, Chapel Hill

11:45

An Investigation of the Assumptions of the Current Status Model

Jian-Lun Xu*, National Cancer Institute

12:00

Floor Discussion

130. CONTRIBUTED PAPERS: NEW METHODS FOR GWAS

Grand Ballroom IX (3rd Floor)

Sponsor: ENAR

Chair: Tamar Sofer, Harvard School of Public Health

10:30

Lassot: A Hybrid of Lasso and t-regularization for Penalized Regression and Applications to Genomic Selection

Long Qu*, Wright State University

10:45

SHAVE: Shrinkage Estimator Measured for Multiple Visits Increases Power in GWAS of Quantitative Traits

Quantitative Traits
Osorio D. Meirelles*, Jun Ding and Toshiko Tanaka,
National Institute on Aging, National Institutes of Health
Serena Sanna, Istituto di Ricerca Genetica e Biomedica,
Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy

Hsih-Te Yang, Taiwan Food and Drug Administration **Dawood B. Dudekula**, National Institute on Aging,

National Institutes of Health

Francesco Cucca, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy **Luigi Ferrucci**, National Institute on Aging,

National Institutes of Health

Goncalo Abecasis, University of Michigan

David Schlessinger, National Institute on Aging,
National Institutes of Health

11:00

Secondary Trait Analysis for Case-Control
Association Studies in the Presence of Covariates
Godwin Yung* and Xihong Lin, Harvard University

11:15

Penalized Multi-Marker versus Single-Marker Regression Methods for Genome-Wide Association Studies of Quantitative Traits

Hui Yi*, Netsanet Imam and Ina Hoeschele, Virginia Tech

11:30

Association Studies with Imputed SNPs Using Expectation-Maximization-Likelihood-Ratio Test Kuan-Chieh Huang* and Yun Li,

University of North Carolina, Chapel Hill

11:45

Statistical Calibration of qRT-PCR, Microarray and RNA-Seq Gene Expression Data with Measurement Error Models

Zhaonan Sun*, Thomas Kuczek and **Yu Zhu**, Purdue University

12:00

IUTA: A Statistical Method to Detect
Differential Isoform Usage from mRNA-Seq Data

Liang Niu*, Weichun Huang, David M. Umbach and **Leping Li**, National Institute of Environmental Health Sciences, National Institutes of Health

INDEX

Aban, Inmaculada 7k Abarin, Taraneh 33 Abecasis, Goncalo R. 27, 75, 130 Adams, Ryan P. 56 Aerts, Marc 44 Afsari, Bahman 104 Agan, Brian K. 87 Agarwal, Deepak SC3 Agniel, Denis M. 23 Ahn, Jaeil 116 Ahn, Kwang Woo 24, 125 Ahn, Mihye 101 Airoldi, Edoardo M. 40 Akcin, Haci 84 Akerman, Meredith Akweongo, Patricia 109 Albacha-Hejazi, Hasan 24 Albert, Paul S. 13, 113, 128, 129 Alexeeff, Stacey E. 18 Allen, Andrew S. 95 Almirall, Daniel 117 Almudevar, Anthony 7f, 33 Alonso, Ariel 107 Alvarez, JoAnn 48

3m An, Qian Anderson, Georgiana B. 24 Anderson, Keaven M. 28 Anderson, Stewart J. 37, 115, 128 Ando, Yuki 23 Andreasssen, Ole 25 Andrei, Adin-Cristian 19 Andrews, Jennifer 76 Andridge, Rebecca R. 127 Apanasovich, Tatiyana V. 42 Archer, Kellie J. 5h Asafu-Adjei, Josephine K. 129 Asar, Ozgur 128 Aston, John 68 Atkins, David C. 34 Attie, Alan 24 Attwood, Kristopher 103 Austin, Erin 36 Awadalla, Saria 2j Axelson, David 50 Aydin, Burcu 71 Ayers, Gregory 48 Azzone, Vanessa 3i

Baechler, Emily C. 24 101 Baek, Jongyu Baggerly, Keith 15 Bahou, Wadie F. 4c Bai, Jiawei 18 Bailey-Wilson, Joan E. 24, 43 Bair, Eric 22, 36 Baladandayuthapani, 3q, 15 62 Veerabhadran Balakrishnan, Narayanaswamy 99 Balasubramanian, 63, 76 Raji Bandos, Andriy I. 103 Bandyopadhyay, 101 Dipankar Banerjee, Moulinath 19 31 Banerjee, Samprit Banerjee, Sudipto 60,63 Barker, Lawrence E. 84 Barnett, Ian J. 57 Barnett, Nancy P. 113 Baro, Elande 117 Barrdahl, Myrto 33, 45 Barrera-Gomez, Jose Bartolucci, Francesco 30

Basagana, Xavier	119	Bondell, Howard D.	11j, 20	Busonero, Fabio	75
Batterman, Stuart A.	8h	Bordonali, Elena K.	23	Butterfield, Ryan	103
Bazin, Pierre-Louis	89	Boruvka, Audrey	35	Butz, Arlene	38
Beaty, Terri H.	4n, 24	Bose, Maitreyee	33	Buyse, Marc	107
Beavers, Daniel P.	46	Bowman, Dale	23	Cadwell, Betsy L.	84
Bebu, Ionut	87	Bowman, DuBois	89, 97, 123	Caffo, Brian S.	7m, 22, 64, 89, 97,
Beck, J. Robert	5e	Bradford, Denise	84	Cabill Farrall	112
Becker-Dreps, Sylvia	122	Braga-Neto, Ulissess	104	Cai. Ba	33
Behrens, Timothy W.	24	Branch, Craig A.	58	Cai, lianwan	78
Behseta, Sam	80	Braun, Danielle	61	Cai, Jianwen	59, 73, 105
Bellamy, Scarlett	R5	Braun, Thomas M.	8k, 35, 52	Cai, Tianxi	5g, 23, 34, 47, 81, 100
Bello, Ghalib A.	48	Bressler, Jan	33	Cai, Tony	45, 73, 108
Benjamini, Yuval	7p	Breysse, Patrick N.	38	Cai, Zhuangyu	11b
Berndt, Sonja I.	1d	Brice, Joann	10c	Calabresi, Peter A.	97
Bernhardt, Paul W.	72	Brinks, Ahnalee	31	Calaway, John	32
Berrocal, Veronica J.	8b, 58, 101	Britton, Tom	1c	Califano, Joseph A.	90
Betensky, Rebecca A.	129	Broglio, Kristine R.	14	Campbell, Jeff	104
Beyl, Robbie A.	8i, 10a, 111	Broman, Karl W.	1i	Cao, Guanqun	20
Bhangale, Tushar R.	24	Brown, Andrew	63	Cao, Ying	45
Bharath, Karthik	46	Brown, Benjamin T.	7c	Carlin, Bradley P.	29, 113, 122, 126,
Bhattacharya, Anirban	113	Brown, Charles H.	31	Carnogio Nicolo P	SC2 46
Bhaumik, Dulal K.	37	Brown, Marshall D.	5g	Carnegie, Nicole B. Carrico, Caroline K.	
Bi, Xuan	44, 128	Brown, Shawn T.	34	,	65
Billard, Lynne	47	Brownstein, Naomi C.	104	Carroll, Raymond J.	4b, 5b, 44
Bindele,	47	Brumback, Babette	11b	Cassess Alberta	76 32, 83
Huybrechts F.	122	Bryan, Kevin A.	40	Cassese, Alberto Castellanos, Xavier F.	
Birmaher, Boris	50	Bryan, Matthew W.	37		18, 36
Bliss, Donna Z.	86	Buhule, Olive D.	60	Chaganty. N. Rao Chan, Wenyaw	
Bliznyuk, Nikolay	98	Bullitt, Elizabeth	71	Chandrasekhar,	8c
Blitzstein, Joseph	12	Burchard, Esteban	33	Rameela	88
Boatman-Reich, Dana	64	Bureau, Alexandre	24	Chang,	125
Bobb, Jennifer F.	8g, 38	Burke, Erin	58	Chang-Chou H	125
Boca, Simina M.	7e	Burke, Lora E.	37	Chang, Hsiu-Ching	116
Boerwinkle, Eric	75	Burton, Jeffrey	8i, 10a, 111	Chang, Howard H.	38, 101
Bogomolov, Marina	108	Burzykowski, Tomasz	107	Chang, Joyco	7g, 69
Bondarenko, Irina	115			Chang, Joyce	59

Chang, Lun-Ching	75, 126	Chen, Yu	25	Cole, Stephen	60
Chang, Shu-Ching	116	Chen, Zhe	4a	Coles, Adrian	62
Chang, Yu-Wei	48	Chen, Zhengjia	74	Collado-Torres,	4 20
Chanock, Stephen J.	33	Cheng, Guang	22, 100	Leonardo	4m
Chappell, Richard	35, 114	Cheng, Jian	89	Collinge, William O.	94
Charnigo, Richard J.	21, 47, 122, 124	Cheng, Joyce	3h	Conlon, Anna SC	107
Chatterjee, Arpita	99	Cheng, Wei	29	Conneely, Karen N.	45
Chatterjee, Nilanjan	4b, 5b, 33, 45, 95	Cheng, Yu	71, 122	Connett, John	99
Chelaru, Florin	80	Chervoneva, Inna	21	Connor, Jason T.	14, 48
Chen, Baojiang	47	Chevret, Sylvie	92	Cook, Andrea J.	54
Chen, Chi-Hua	25	Chi, Yueh-Yun	119	Cook, Dennis	16
Chen, Eric	27	Chiaromonte,	20.100	Cook, John	2b
Chen, Geng	3e	Francesca	30, 109	Cook, Richard J.	35, 49, 110, 114, 127
Chen, Guanhua	36, 100	•	104, 117	Cope, Leslie	90
Chen, Huaihou	58, 62, 96	Chiou, Jeng-Min	68	Core, Cynthia	50
Chen, Jun	24	Cho, Hyunkeun	30	Cornea, Emil A.	34
Chen, Kehui	50	Choi Bara lia	59	Corrada Bravo, Hecto	
Chen, Kun	49	Choi, Bong-Jin	19	Coull, Brent A.	38, 60, 62
Chen, Li	6g, 129	Choi, Hyung Won	53	Couper, David J.	99, 105
Chen, Linlin	7f	Choi, Jaeun	61	Cox, Dennis D.	32
Chen, Mengjie	41	Choi, Jungsoon	78	Crainiceanu, Ciprian M.	1a, 10j, 18, 20, 43,
Chen, Min	8a	Choi, Sangbum	81		47, 62, 68, 89, 97, 98, 112
Chen, Ming-Hui	67	Choi, Sungwoo	126	Cramer, Steve	58
Chen, Rui	41	Christensen, Brock C.		Cribben, Ivor	25
Chen, Shaojie	89	Chu, Haitao	60, 113, 126	Cristiano, Stephen	4p
Chen, Shuo	58	Chuang-Stein, Christy		Crooks, James L.	118
Chen, Tianle	64	Chung, Christine H.	90	Crovella, Mark	1c
Chen, Ting-Huei	33	Chung, Moo K.	1h, 89	Cucca, Francesco	75, 130
Chen, Ting-Yu	8c	Chung, Wonil Ciarleglio, Adam	4h 5f, 96	Cui, Yuehua	47
Chen, Wei	75	Cicek, Hatice	19	Cunniff, Chris	76
Chen, Weijie	104	Clancy, John P.	72	Dahl, David B.	32
Chen, Wenan	24	Clement, Lieven	57	Dai, Hongying	21, 47, 124
Chen, Xiaotian	122	Coffey, Christopher S.		Dai, Tian	86
Chen, Xuerong	76, 102	Coffman, Donna L.	39	Dale, Anders	25
Chen, Yong	60, 71, 126	Colantuoni, Elizabeth		Danaher, Michelle	73
		Columbiani, Elizabetti	21, 20		
			1		

Daniels, Michael J.	46, 58, 85, 115	Dominici, Francesca	52, 61, R2	Falciani, Francesco	32
Danilova, Ludmila V.	90	Domthong,	104	Famian, Damian	53
Darrow, Lyndsey A.	38	Uthumporn	104	Fan, Jieyu	50
Das, Ritabrata	19	Dong, Tuochuan	103	Fan, Qian	21
Dasari, Ramachandra	122	Dong, Xiaoyu	11h, 48	Fan, Ruzong	43, 62
Datta, Abhirup	60	Dore, David D.	39	Fang, Hong-Bin	74, 102
Datta, Gauri S.	63	Doss, Hani	4a	Favaro, Stefano	56
Datta, Susmita	66	Du, Guangwei	63	Fazio, Massimo	15
Davidian, Marie	44, R7	Du, Yining	2b	Feingold, Eleanor	4j
De Iorio, Maria	56	Duan, Leo L.	72	Feng, Changyong	114
Deden, Rukmana	9f	Dudekula, Dawood B.		Feng, Sheng	4q
DeFor, Todd	114	Duerr, Isaac H.	98	Feng, Yang	115
Degras, David	112	Duffin, Bret	4r	Ferguson, Kelly K.	8h
Delaney, Joseph AC.	18	Dukic, Vanja	109	Fernandes, Laura L.	49
Demerath, Ellen	33	Dunn, Graham	87	Ferrucci, Luigi	18, 127, 130
Deng, Ke	83	Dunson, David B.	56, 113	Fertig, Elana J.	4e, 90, 104
Derkach, Andriy	55	Durkalski, Valerie L.	14, 74	Fiecas, Mark	1j
DeSantis, Stacia M.	72, 74, 116	Dyck, Roland	125	Fine, Jason	11e, 71, 105
Devlin, Bernie	1k	Dzemidzic, Mario	25	Finley, Andrew O.	60
Devlin, Sean	88, 102	Eberly, Lynn E.	7c, 86	Fisher, Aaron	24
Dey, Dipak	127	Edmonson, Michael	90	Fissell, William Henry	11g
Deyoe, Edgar A.	3k	Egleston, Brian L.	5e	Fitzmaurice, Maryann	_
Diao, Liqun	114	Ellerbe, Caitlyn	74	Flournoy, Nancy	11a, 74, 125
Díaz, Iván	92	Elliot, Daniel	10c	Fofana, Demba	23
Diette, Gregory B.	38	Elliott, Lloyd	56	Foley, Kristen M.	118
Diez Roux, Ana	45	Elliott, Michael R.	3c, 72, 107	Forgor,	
Diggle, Peter J.	128	Elm, Jordan	74	Abudulai Adams	109
Dignam, James J.	88	Eloyan, Ani	89, 112	Fortin, Jean-Philippe	4e
Diler, Rasim S.	50	Emerson, John	T5	Forzani, Liliana	16
Ding, Jun	75, 130	Emsley, Richard	87	Foster, Jared C.	100
-	9e	Engelhardt, Barbara	56	Franceschini, Nora	75
Ding, Wei	102	Entsuah, Richard	48	Frangakis,	126
Ding, Xianting	22, 49, 104	Epstein, Michael P.	45, 95	Constantine E.	126
Ding, Ying		Evani, Bhanu M.	36	Frazee, Alyssa	57
DiRienzo, Greg	123	Evans, Otis R.	3b	French, Benjamin	72
Dobbin, Kevin K.	21	Evans, Scott R.	23	Fricks, John	78, 94, 109
		Exner, Natalie	111		
		ı	'		

Fronczyk, Kassie	46	Goldstein, Benjamin	50	Haka, Abigail	122
Fu, Haoda	2g, 29, 123	Goldstein, Joshua	109	Hall, Charles B.	18
Fuentes, Montse	65	Goldstein, Tina	50	Hall, Diana	118
Gail, Mitchell H.	124	Gönen, Mithat	88, 102	Hamasaki, Toshimitsu	23
Galanter, Joshua	33	Gorfine, Malka	61	Han, Fang	22
Gallagher, Colin M.	71	Gou, Jiangtao	23	Han, Junhee	88
Gallagher, Jane E	118	Goyal, Ravi	46	Han, Peisong	115
Gallop, Robert	34	Graham, Robert R.	24	Han, Shengtong	30
Ganna, Andrea	1d	Gray, Simone	84	Han, Yu	114
Gao, Sujuan	73	Greenwood,		Hancock, William O.	78
Gatsonis, Constantine	e 29	Celia M.T.	4e	Handorf, Elizabeth	82
Gaykalova, Daria A.	90	Greven, Sonja	62	Hanfelt, John J.	115
Gaynor, Sheila	36	Grineski, Sara E.	8e	Hansen, Kasper D.	4e
Gellar, Jonathan E.	20, 68	Groth, Caroline	63	Hansen, Niels R.	104
Geman, Donald	104	Gruber, Susan	22	Hao, Han	4k, 62
Gennings, Chris	36, 65	Gruber, Tanja	90	Haran, Murali	109
George, Brandon J.	7k	Grubesic, Tony H.	60	Harel, Ofer	127
George, E. O.	23	Gu, Xiangdong	63, 76	Harezlak, Jaroslaw	25, 112
George, Varghese	40, 50, 104	Guan, Weihua	33	Hartge, Patricia	33
Gerardo-Giorda, Luca	109	Gueorguieva, Ralitza	5d	Hastings, Nicole	101
Gertheiss, Jan	112	Guillaume, Bryan	97	Hatfield, Laura A.	3i
Ghosh, Arpita	33	Guindani, Michele	32, 46, 83, 88, 108	Hayden, Mary	109
Ghosh, Debashis	23, 39, 45, 53,	Gunzler, Douglas	87	He, Fanyin	115
	59, 121	Guo, Jing	122	He, Jiwei	73
Ghosh, Kaushik	32	Guo, Wei	4d	He, Kevin	105, 124
Ghosh, Pulak	32	Guo, Wenge	108	He, Peng	24
Ghosh, Santu	71	Guo, Xiuging	45	He, Qing	7b, 32
Ghosh, Soumitra	24	Guo, Ying	58, 86, 89	He, Tao	47
Gignoux, Chris	33	Gur, David	103	He, Xin	1k
Gile, Krista J.	113	Gurvich, Olga	86	He, Xuming	30
Gill, Mary K.	50	Gustafsson, Stefan	1d	He, Yulei	79
Gilmore, John H.	7n	Gutman, Roee	39	He, Zangdong	123
Giurcanu, Mihai C.	10i	Hackstadt, Amber J.	38	He, Zihuai	45
Glaser, Michelle	18	Hagar, Yolanda	109	Heagerty, Patrick J.	37, 70, SC5
Gnatenko, Dmitri V.	4c	Haglund, Michael M.	94	Hedayat, Samad	64
Goldsmith, Jeff	43, 96, 97, 98, T2	Haibe-Kains, Benjamin	90		

Heller, Ruth	108	Hu, Ming	83	Irony, Telba Z.	52
Henderson, Nicholas	66, 128	Hu, Tao	6c, 59	lyengar, Satish	7a, 50
Hendrichsen, Ditte K.	78	Hu, Yijuan	1d, 95	Jaffe, Andrew E.	4m
Hernan, Miguel	22	Hua, Yi	103	Janes, Holly	100
Herrera, Juana M.	8e	Huang, Chiung-Yu	17, 114	Jang, Carey	118
Herring, Amy H.	65, 113	Huang, Erya	4c	Jang, Woncheol	63
Hessel, Engel F.	112	Huang, Jian	11k, 124	Jarrin, Inmaculada	22
Heyse, Joseph F.	67	Huang, Kuan-Chieh	130	Jarso, Samson	97
Hicks, Gregory	127	Huang, Lei	10j, 89, 96, 112	Jauch, Edward	74
Hill, Elizabeth G.	22	Huang, Weichun	130	Jaynes, Jessica	102
Hillis, Stephen L.	103	Huang, Whitney	8f	Jelsema, Casey M.	101
Hirschhorn, Joel	1d	Huang, Xuelin	72, 81	Jeong, Jong-Hyeon	86, 114
Ho, Chih-Ming	102	Huang, Xuemei	63	Ji, Hongkai	27, 90
Ho, Yen-Yi	24	Huang, Yen-Tsung	82, 90	Ji, Pengsheng	108
Hobbs, Brian P.	122	Huang, Yi	117	Ji, Yuan	85
Hochman, Daryl	94	Huang, Yijian	114	Jia, Jia	22, 75
Hodges, James S.	86	Huang, Ying	100	Jia, Zhenyu	35, 66
Hodgson, Abraham	109	Huang, Yuan	11k	Jiang, Bei	72
Hoeschele, Ina	130	Hubbard, Alan E.	93	Jiang, Fei	71
Hoffman, Lesa	69	Hudgens, Michael G.	23, 107, 122	Jiang, Hui	41
Hoffmann, Raymond G.	3k	Hudson, Thomas J.	4e	Jiang, Qin	2d
Hogan, Joseph H.	113	Hughes, John	78	Jiang, Wenxin	3d
Hom, Douglas C.	8b	Hughes, Michael D.	129	Jiang, Ying	125
Honaker, John	73	Hunt, Kelly	72	Jiang, Yu	95
Hong, Chuan	71	Huo, Zhiguang	53, 102	Jiang, Yunxuan	45
Hong, Hwanhee	29, 113, 126	Hutson, Alan	71, 88	Jin, Ick Hoon	101
Hooker, Giles	20	Huynh, Tran	63	Jin, Jiashun	108
Hopson, Tom	109	Hyrien, Ollivier	36	Joffe, Marshall M.	73, 120
Hossain, Monir	78	Hyun, Jung Won	7n	Johnson, Brent A.	61, 123
Hou, Jiayi	5h	Hyun, Noorie	99	Johnson, Timothy D.	3j, 3l, 8b, 25, 56, 58, 60
Hou, Lin	41	Ibrahim, Joseph G.	34, 67, 89, SC6	Johnson, William D.	8i, 10a, 111
Houseman, Andres	1f	Illian, Janine B.	78	Johnston, Richard	95
Hsu, Jason C.	49	Imam, Netsanet	130	Joo, Hyun	32
Hsu, Jesse Y.	73	Ingelsson, Erik	1d	Joshi, Amit D.	33, 45
Hsu, Li	26	Ionides, Edward L.	109	Jung, Yoonsung	11d
113U, LI	20	Irizarry, Rafael	27, SC4	sang, roonsung	114

Kahle, David	3h	Kim, Sujin	9f	Kudela, Maria A.	25
Kamboh, M. Ilyas	4f	Kim, Sungduk	113	Kulasekera, Kurunarathna B.	71
Kanetsky, Peter	82	Kim, SungHwan	5c, 53		
Kang, Chaeryon	100	Kim, Youn Nam	102	Kundu, Suprateek	3q
Kang, Hyunseung	73	Kimmel, Stephen E.	4e, 72	Kurland, Jacquie	117
Kang, Jian	3m, 7b, 97, 113	Kindo, Bereket P.	22	Kurtek, Sebastian	1b, 15, 46
Kang, Le	104	King, Ruth	78	Kutner, Michael	74
Kang, Shan	35	King, Stuart E.	78	Kwok, Richard	63
Kapur, Kush	37	Kirby, Russell	78	Labbe, Aurélie	4e
Kardia, Sharon	45	Kitago, Tomoko	96	Laber, Eric	11j, 74
Kareken, David A.	25	Klassen, Eric	15, 34	Ladha, Alim	71
Kasari, Connie	117	Klebnov, Lev	7f	Lai, Hui-Chuan	114
Katenka, Natallia	1c	Kleinfeld, David	7a	Lai, Ming-Jun	122
Kattan, Michael W.	81	Kleinman, Ken P.	2i	Lai, Yinglei	124, 128
Kawut, Steve	82	Knorr, Jack S.	3a	Lakshminarayanan, Mani Y.	67
Keiding, Niels	65	Kodell, Ralph L.	6e	Lan, Kuang-Kuo G.	67
Keller, Mark	24	Koestler, Devin C.	1f	Lan, Shiwei	80
Kelly, Clare	58	Kohn, Nina	111	Landau, Sabine	87
Kemmer, Phebe B.	89	Kolaczyk, Eric	1c	Landon, Bruce	61
Kendziorski, Christina	a 4r, 24, 102	Kolm, Paul	10c, 61	Landrum, Mary Beth	61
Kennedy, Edward H.	120	Kong, Feng-Ming	49	Lane, Adam	74
Kenward, Michael G.	44	Kong, Lan	72	Langlois, Peter H.	65
Kidwell, Kelley M.	117	Kong, Linglong	1e	Larose, Chantal	127
Kim, Chanmin	46	Kong, Shengchun	99	Larsen, Michael D.	50
Kim, Chulmin	116	Kong, Xiangrong	50	Laud, Purushottam	24
Kim, Daeyoung	11d	Korthauer, Keegan D.	102	Lauer, Stephen A.	2i
Kim, Eunhee	70	Kosorok, Michael R.	10e, 36, 49, 100,	LaVange, Lisa M.	28
Kim, Ho	34	W 6. D .	106, R9	Lawless, Jerry F.	55
Kim, Inyoung	34	Kraft, Peter	33, 45	Lawson, Andrew B.	78, SC7
Kim, Jaejik	104	Krafty, Robert T.	94	Laxminarayan,	
Kim, Janet S.	20, 96	Krall, Jenna R.	127	Ramanan	111
Kim, Jinheum	102	Kransler, Kevin	8a	Lazar, Nicole A.	63
Kim, Jong-Min	11d	Krumholz, Harlan M.	31	Lee, Adel	38
Kim, Namhee	58	Kruse, Jane	19	Lee, Chi Hyun	114
Kim, Sehee	6f	Kryger Jensen, Andreas	43	Lee, Ching-Wen	37
Kim, Soyoung	105	Kuczek, Thomas	130	Lee, Eun-Joo	6a

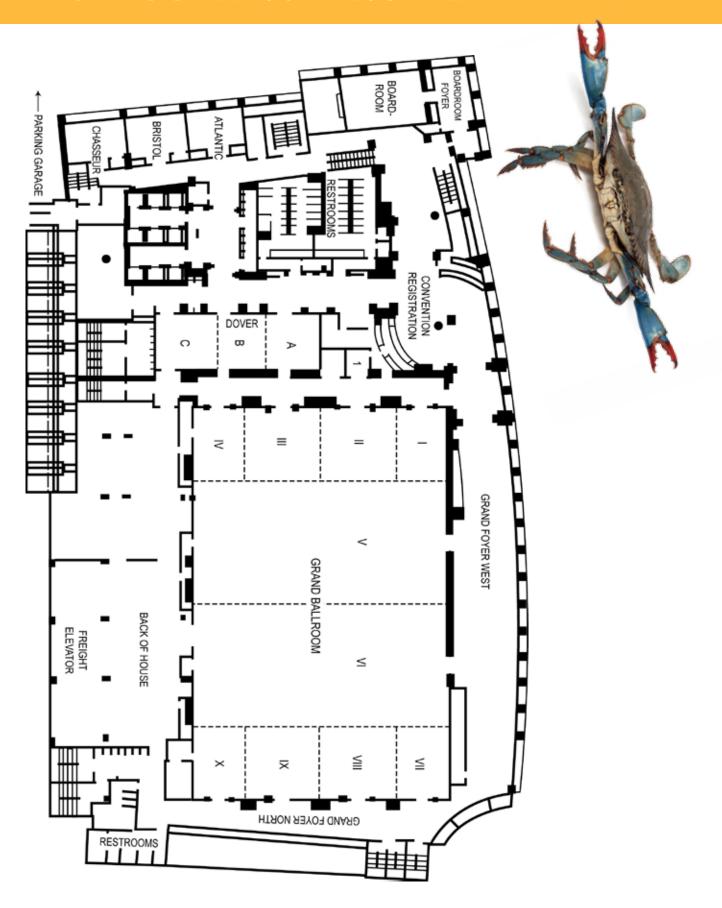
Lee, EunYoung	63	Li, Meijuan	21	Liao, Shu-Min	11d
Lee, J. Jack	2b, 48	Li, Meng	20	Lilly, Michael B.	35, 66
Lee, Juhee	85	Li, Ming-Chung	14	Lim, Hyun J.	125
Lee, Kuang-Yao	71	Li, Minming	117	Lin, Chien-Wei	75
Lee, Minjung	88	Li, Peng	50	Lin, Danyu	1d, 35, 75, 82, 129
Lee, Seonjoo	112	Li, Qin	103	Lin, Haiqun	31
Lee, Seung-Hwan	6b	Li, Qiwei	32	Lin, Hongbo	2a
Lee, Seunggeun	45	Li, Quefeng	100	Lin, Hui-Min	126
Leek, Jeffrey T.	4m, 7e, 12, 24, 57, 90	Li, Qunhua	41	Lin, Keng-Han	82
Legrand, Catherine	76	Li, Runze	11k	Lin, Weili	101
Lehmann, Doug	61	Li, Ruosha	71	Lin, Xihong	57, 82, 91, 130
Leisenring, Wendy	128	Li, Shanshan	70, 81	Lin, Yan	22
Lemire, Mathieu	4e	Li, Shi	8h	Lindquist, Martin A.	7m, 93, 112
Lenarcic, Alan B.	32	Li, Shi	26	Lindsay, Bruce G.	30, 57
Leng, Ning	4r	Li, Shuang	40	Linero, Antonio	85
Lesser, Martin L.	111	Li, Shu-xia	31	Ling, Qiang	101
Levin, Bruce	R3	Li, Tan	32	Ling, Yun	37
Lewis, Mark	98	Li, Xiaochun	87	Linkletter, Crystal	113
Lewis, Mark	63	Li, Xiaomao	24	Lipkovich, Ilya	28
Li, Ben	32	Li, Xiaoshan	7 j	Lipsitz, Stuart	114
Li, Ben	71	Li, Xiaoxue	128	Lipton, Michael L.	58
Li, Bing Li, Bingshan	75	Li, Xinmin	128	Little, Roderick J.	51
Li, Cheng	3d	Li, Yang	72	Liu, Danping	79, 129
Li, Cheng Li, Cong	124	Li, Yehua	110	Liu, Guanghan	67
Li, Cong Li, Fan	39, 64	Li, Yi	6f, 61, 105, 124	Liu, Guodong	72
Li, Fair	47, 55	Li, Yimei	7n	Liu, Hai	73
Li, Gen Li, Grace	49	Li, Yuan	4r	Liu, Han	14, 19, 22, 97
Li, Grace Li, Haocheng	44	Li, Yun	61, 75, 107, 130	Liu, Hanhua	87
Li, Haoeneng	23	Li, Zheng	74	Liu, Jihong	78
Li, Hongzhe	24, 27, 45, 57	Li, Zhi	19	Liu, Jin	124
Li, Hongzhe	100	Liang, Hua	10g, 128	Liu, Jingchen	69
Li, Leping	130	Liao, Fangzi	50	Liu, Jun S.	83
Li, Leping Li, Lerong	20	Liao, Ge	22	Liu, Ke	76
Li, Lerong Li, Lexin	7j	Liao, Katherine	34	Liu, Kenneth	48
Li, Lexiii	99	Liao, Peizhou	95	Liu, Lan	122
Li, Li Li, Lingling	87	Liao, Serena	7h	Liu, Li	1k
Li, Linging	<u>, </u>				

Liu, Minzhao	115	Lum, Kristian	60	Mao, Lu	35
Liu, Peng	78	Lunagomez, Simon	40	Marazita, Mary L.	24
Liu, Piaomu	76	Luo, Lola	18	Marchionni, Luigi	104
Liu, Qian	36	Luo, Sheng	3e, 72, 116	Marcovitz, Michelle S.	
Liu, Qing	125	Luo, Xi	80	Marcus, Beth H.	46
Liu, Qing Liu, Shelley	4q	Luo, Xianghua	114	Markovic, Ana	90
Liu, Shuchang	104	Luo, Zhehui	92	Marron, J. S.	7l, 15
Liu, Shuling	36	Lyles, Robert H.	73	Marsit, Carmen J.	1f
Liu, Xiaoxi	99	Lynch, Miranda L.	63	Martinez, Elvis	114
Liu, Xiaoxi	18	Lystig, Theodore	54	Mateen, Farrah J.	97
		Ma, Fei	36	Mathew, Thomas	87
Liu, Yeqian	76				
Liu, Ying	115	Ma, Hua	103	Matsui, Elizabeth C.	38
Liu, Yufeng	11e, 22, 124	Ma, Junshui	48	Matuzak, Martha	49
Liu, Yulun	126	Ma, Ling	59	Maxwell, Taylor	45
Liu, Zhuqing	58	Ma, Rick	105	Mayberg, Helen S.	97
Liublinska, Victoria	9a	Ma, Shuangge	11k, 70, 124	Mazumdar, Sati	115
Lobach, Iryna	62	Ma, Xiaoye	60	McCall, Mathew N.	33
Lock Morgan, Kari	39	Ma, Yanyuan	71	McCarthy, Patrick M.	19
Logan, Roger W.	22	Maas, Paige	5b	McClelland, Robyn L.	18
Lok, Judith J.	120, 129	MacMillan, Denise K.	118	McClintock, Scott	34
Lombard, Fred	88	Madigan, David	93	McClure, Leslie A.	2h, 117
Long, D. Leann	9c	Mahmoud, Hamdy	34	McCracken,	21
Long, Dustin M.	107	Mahshie, James	50	Courtney E.	
Long, Qi	7b, 61	Maier, Verena	112	McCulloch, Charles	44
Looney, Stephen W.	21	Mairal, Julien	7p	McDowell, Jennifer E.	
Lopa, Samia H.	86	Maitland, Michael	85	McGee, Edwin	19
Lopez, Adriana	50	Maity, Arnab	20, 62, 96	McGready, John	12
Loredo-Osti, J.C.	33, 86	Malaisrie, S. Chris	19	Mcintosh, Brian E.	4r
Louis, Thomas A.	126, R4	Malec, Don	79	McLean, Mathew W.	20
Lu, Qing	122	Mallick, Bani	3q	McMahan, Christopher S.	71
Lu, Tao	113	Malone, Steve	7c	McMurray, Helene	33
Lu, TingTing	3j, 60	Manatunga, Amita K.	36, 114, R1	Meeden, Glen D.	63
Lu, Wenbin	6d	Mandrekar, Vidyadhar	47	Meeker, John D.	8h
Lu, Wenjing	37	Mangold, Elisabeth	24	Meirelles, Osorio D.	75, 130
Lu, Yi	10b	Manser, Paul T.	4g	Mejia, Amanda	7m
Lu, Zhaohua	7n	Manyam, Ganiraju	62	Mendolia, Franco	125

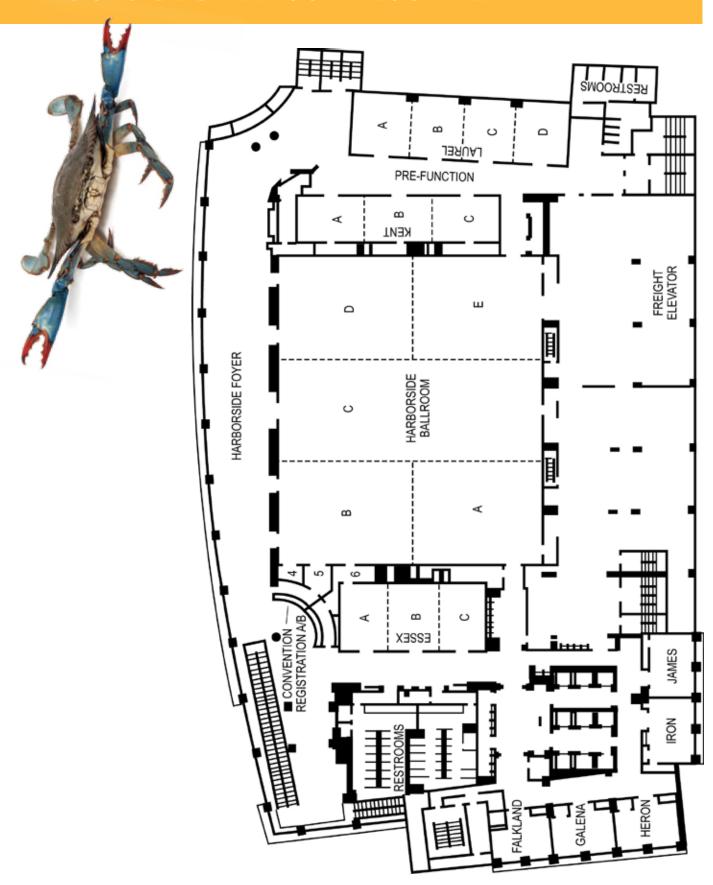
Menon, Sandeep M.	28	Muller, Samuel	4b	Ning, Yang	47, 71
Mercola, Dan A.	35, 66	Murphy, Susan	11c	Niu, Liang	130
Mermin, Jonathan	84	Murray, Jeffrey C.	24	Nobel, Andrew B.	47, 55
Merrill, Peter D.	2h	Murray, Susan	49	Normand,	2: T1
Meyer, Mark J.	62	Murray, Thomas A.	122	Sharon-Lise T.	3i, T1
Meyer, Nick	74	Muschelli, John	47	North, Kari E.	1d, 75
Miller, David L.	96	Nagaraja, Ramaiah	75	Nugent, Rebecca	12
Mills, James L.	43, 62	Nahum-Shani, Inbal	117	Nychka, Doug	18
Minsker, Stanislav	100	Nam, Chung Mo	102	Oakes, David	125
Mireless, Lynn	4p	Nam, Kijoeng	70	Oberlin, Brandon G.	25
Mishra-Kalyani,		Nan, Bin	19, 99, 100	Obuchowski, Nancy A	
Pallavi S.	61	Napelenok, Sergey L.	118	Ochs, Michael F.	90
Mitchell, Emily M.	73	Nathoo, Farouk S.	31	Ogbagaber, Semhar B	. 87
Mitchell, Shira	60	Neas, Lucas M.	118	Ogburn, Elizabeth L.	39
Mitra, Nandita	82	Neaton, James D.	126	Ogden, R. Todd	62, 96, T2
Mittleman, Murray	38	Nebel, Mary Beth	7m, 112	Oh, Sam	33
Molenberghs, Geert	44, 107, SC1	Needham, Dale M.	20	Ohno, Yuko	23
Momin, Amin	3q	Neelon, Brian	101	Okosun, Ike	9b
Mondal, Shoubhik	59	Nelson, Jennifer C.	54	Olson Hunt, Megan J.	127
Monge, Susana	22	Nelson, Sybil L.	7d	O'Malley, A. James	61
Monoghan, Andrew	109	Nesvizhskii, Alexey	53	O'Malley, Stephanie	5d
Moonie, Sheniz	35	Nettleton, Dan	78, 83	Ombao, Hernando	58, 80, 89
Moorman, David	80	Neugebauer, Romain	92	Orr, Megan	78
Morris, Jeffrey S.	15, 62	Neuhaus, John	44	Ortmann, Ward	24
Morton, Sally C.	51	Neumann, Christoph		Osgood, Nathaniel	125
Mostofsky, Stewart	7m	Newton, Michael A.	66	Ostrovnaya, Irina	88, 102
Motta, Giovanni	94	Neykov, Matey	57	Ott, Miles Q.	113
Mudholkar, Govind	2j	Nguyen, Bao K.	4r	Ou, Fang-Shu	59
Muehleman, Amber	98	Nguyen, Yet	83	Ounpraseuth, Songthip T.	6e
Mueller, Peter	85	Ni, Ai	73	Ozonoff, Al	60
Mukherjee, Bhramar	8h, 26, 45	Nichols, Thomas E.	97	Pacifici, Krishna	74
Mukhi, Vandana	23	Nicolaie, Mioara Alina		Padmanaban, Shweta	
Müller, Hans-Georg	43	Nie, Lei	100		
Muller, Keith	119	Nightingale, Glenna F.		Pagano, Marcello	111
Müller, Peter	Т3		21, 81	Pal Choudhury, Parichoy	33
		Ning, Jing	21,01	Palmas, Walter	45

Pan, Wei	24, 36, 45, 121	Pirracchio, Romain	92	Raghunathan,	
Pandya, Raj	109	Podolsky, Robert H.	40, 50	Trivellore	115
Pankow, James	33	Pomann, Gina-Maria	89	Rahardja, Dewi	46
Pardo, Fernando	32	Potgieter, Cornelis J.	88	Rahman, AKM F.	59
Park, JuHyun	95	Pounds, Stan	90	Ramachandran, Gurumurthy	63
Park, Junyong	126	Pourahmadi, Mohsen	16	Ramakrishnan,	
Park, Sung Kyun	8h	Powell, Helen L.	8d	Viswanathan	7d, 74
Park, Yongseok	88	Prado, Raquel	58	Ranjan, Ashutosh	117
Parker, Jennifer D.	84	Pramanik, Santanu	111	Rao, Shangbang	89
Parker, Margaret M.	24	Prejean, Joseph	84	Rappold, Ana G.	118
Parmigiani, Giovanni	61	Presnell, Brett D.	10i	Rathouz, Paul	128
Patil, Prasad	90	Prezant, David	18	Ray, Meredith	113
Patil, Sujata M.	48	Price, Dionne L.	R6	Real, Leslie	109
Patterson. Andrew D.	121	Price, Elinora	76	Redden, David T.	50, 61
Pawlikowska, Iwona	90	Price, Karen L.	29	Regier, Michael D.	73
Payne, Anthony	33	Proschel, Christoph	7f	Reich, Brian J.	38, 74, 85, 108, 118
Peddada, Shyamal D.	101	Puggioni, Gavino	109	Reich, Daniel S.	89, 97, 112
Peña, Edsel A.	22, 59, 76	Purcell, David W.	84	Reich, Nicholas G.	2i
Peng, Limin	36, 49, 114,	Puzhankara, Soman	76	Reid, Nancy	47
<i>J.</i>	125, T4	Qaqish, Bahjat F.	23	Reimers, Mark A.	4g, 112
Peng, Paul Y.	T7	Qian, Hua	8a	Reiss, Philip T.	58, 96, 112
Peng, Roger D.	8d, 38, 127	Qian, Lianfen	86	Reiter, Jerome P.	31, 79
Pennell, Michael L.	17	Qian, Min	106	Rema, Manoj T.	9b
Pennello, Gene A.	60	Qin, Jing	17	Ren, Chunfeng	127
Perkins, Neil J.	73	Qin, Zhaohui S.	32, 53, 83	Renfro, Lindsay A.	102
Pertea, Geo	57	Qiu, Huitong	22, 89	Rice, John D.	129
Petersen, Maya	92	Qiu, Peihua	1g	Rice, Kenneth	26
Peterson, Derick R.	99	Qu, Annie	30, 44, 123, 128	Richardson, Sylvia T.	53
Petkova, Eva	96	Qu, Long	130	Rieger, Randall H.	34
Pfeiffer, Ruth M.	17, 124	Qu, Simeng	10f	Rinaldo, Alessandro	40
Pham, Dzung L.	89, 97, 112	Qu, Yanping	63	Rizopoulos, Dimitris	44
Phillips, Daisy	23	Quintana, Fernando	85	Rodriguez, Stephanie M.	2e
Phillips, Sharon B.	118	Rabe-Hesketh, Sophia		Roeder, Kathryn	2e 1k
Pi, Lira	22	Raghavarao,	•		8f
Pileggi, Anthony V.	123	Damaraju	3g	Rojas, Natalia	OI

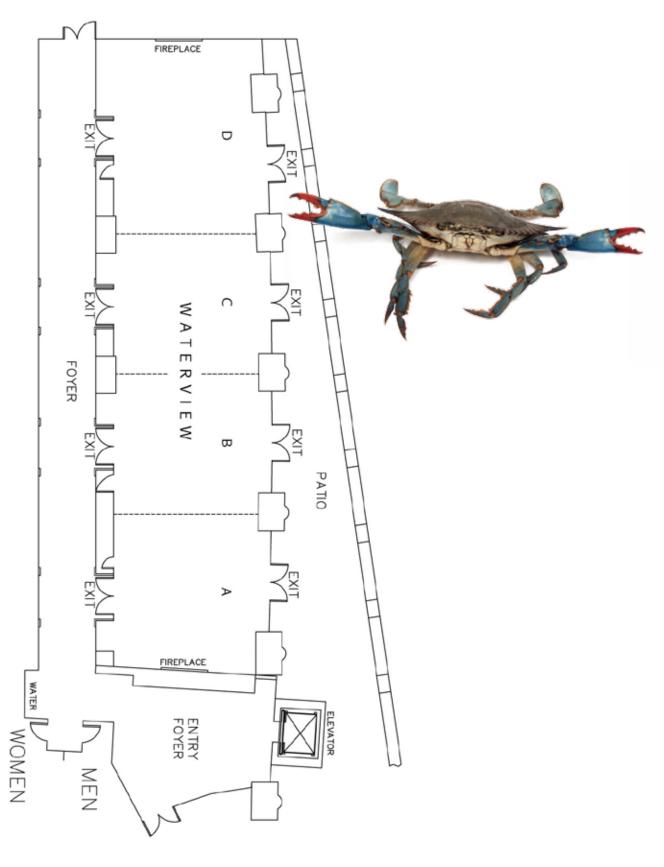
Rom, Dror	23	Sarkar, Sanat K.	108	Sharif, Abbass	98
Romitti, Paul	76	Sattar, Abdus	110	Shastry, Shankar	78
Rose, Sherri	14	Satten, Glen A.	95	Shaubel, Douglas	76
Rosenbaum, Paul R.	73	Savik, Kay	86	Shen, Changyu	2a, 87
Rosenthal, Michael M	. 2f, 14	Saville, Benjamin R.	48	Shen, Haipeng	47, 101
Rosner, Gary L.	85	Schaid, Daniel J.	24	Shen, Jincheng	87
Ross, Michelle E.	101	Scharfstein, Daniel O.	10b, 33, 126	Shen, Juan	30
Roth, Lindsey	33	Scharpf, Robert B.	4p	Shen, Meiyu	11h
Rothman, Adam J.	16	Schaubel, Douglas E.	86, 105	Shen, Weining	21
Roy, Anindya	74	Schenker, Nathaniel	79, 84	Shen, Xiaotong	30, 36
Roy, Jason A.	18, 46	Schiffner, Julia	124	Shen, Yuanyuan	34
Ruberg, Stephen J.	28, 49	Schipper, Matthew	49	Sheppard, Lianne	38
Ruczinski, Ingo	4n, 24	Schisterman,	72	Sheth-Chandra,	10
Rudser, Kyle	99	Enrique F.	73	Manasi Shi Haiwan	18
Ruppert, David	20	Schlessinger, David	75, 130	Shi, Haiwen Shi, Huidong	46, 103
Rusyn, Ivan	55	Schmid, Christopher H.	29	Shi, Peibei	4o 123
Ryu, Duchwan	40, 50, 104	Schnitzer, Mireille E.	120		
Sabo, Roy T.	48, 74	Schork, Andrew	25	Shi, Ran Shi, Xingjie	58 124
Saegusa, Takumi	16	Schork, Nicholas	117	Shi, Yang	41
Safo, Sandra	21	Schrack, Jennifer	18	Shi, Yi	88
Saha Chaudhuri, Paramita	111	Schuirmann, Donald J.	88	Shiee, Navid	97, 112
Sain, Stephan R.	18		108	Shiffman, Saul	128
Salzberg, Steven L.	41, 57	Schwender, Holger	4n, 124	Shih, Vivian H.	21
Salzman, Julia	41	Seaman, John W.	3a, 3f, 3g, 3h	Shin, Sunyoung	11e
Samadi, Seyed Yaser	47	Seetharaman, Indu	49	Shin, Yongyun	127
Samawi, Hani	103	Sen, Saunak	33	Shinohara, Russell T.	1a, 89, 97, 112
Sammel, Mary D.	52, 72	Sereika, Susan M.	37	Shojaie, Ali	16
Sampene, Emmanuel		Sewell, Jenny	84	Shotwell,	
Sampson, Allan R.	50	Shabalin, Andrey	55	Matthew Stephen	11g
Sampson, Joshua N.	4b	Shah, Aarti	52, R8	Shou, Haochang	62, 98, 112
Sanchez, Brisa	101	Shahbaba, Babak	80	Shu, Xinxin	123
Sanna, Serena	130	Shalizi, Cosma	40	Shu, Xu	86
Santelli, Rebecca C.	4h	Shan, Guogen	35	Shugart, Yin Yao	4d
Saracli, Sinan	19	Shang, Hongwei	102	Siddique, Juned	31
Sargent, Daniel J.	102	Shao, Jun	100	Sidore, Carlo	75
		Shardell, Michelle	127	Siegel, Eric R.	6e
	ļ		I		


Siegmund, David	41	Staudenmayer, John W.	44, 98	Sun, Xiaoqian	3n
Simon, Noah	14	Stefanski, Leonard A.	•	Sun, Xiaoyan	114
Simon, Richard	14, 106	Stenzel, Mark	63	Sun, Zhaonan	32, 130
Simpson, Charles H.	127	Sterling, Nicholas	63	Sun, Zhichao	8h
Simsek, Burcin	7a	Stewart, Patricia	63	Sundaram, Rajeshwa	ri 65
Sinha, Debajyoti	114			Surendera Babu, Aruna	84
Sinha, Sanjoy	110	Stewart, Paul W.	48		
Sinnott, Jennifer A.	47	Stewart, Ron	4r	Sweeney, Elizabeth M	
Sitlani, Colleen	26	Stewart, Thomas G.	11f	Sweeney, Patricia	84
Skrondal, Anders	110	Stone, Nathan	34	Swihart, Bruce J.	43
Slate, Elizabeth H.	22	Strasser, Sheryl	9b	Symanski, Elaine	8c
Small, Dylan S.	18, 73	Stromberg, Arnolod	6g	Symanzik, Juergen	98
Smith, Abigail	76	Stroup, Walter W.	119	Szatkiewicz, Jin P.	95
Smith, Jennifer	45	Stuart, Elizabeth A.	9d	Szczesniak, Rhonda D	
Smith, Luke B.	85	Styner, Martin	7n	Tabb, Loni P.	60
Smith, Paul J.	70	Su, Hai	6g	Tadesse, Mahlet G.	32
Snavely, Duane	48	Su, Haiyan	128	Tamhane, Ajit C.	23
Snyder, Ellen	48	Su, Jingyong	15	Tan, Kay See	72
Sobel, Michael E.	93	Su, Shaoyong	40	Tan, Ming	74, 102
Sofer, Tamar	33	Su, Xiao	72	Tanaka, Toshiko	130
Song, Minsun	45	Su, Ya-Hui	7g, 69	Tang, Gong	19, 115, 127
Song, Peter X.K	9e, 57, 66	Subramanian, Sundarraman	59	Tang, Jin	110
Song, Xiao	21, 70	Sugar, Catherine A.	21	Tang, Shaowu	22, 126
Soon, Guoxing	100, 117, 126	Sugimoto, Tomoyuki	23	Tang, Zheng-Zheng	75
Sousa, Ines	128	Sullivan, Danielle M.	127	Tao, Ge	3p
Spiegelman, Donna	6f, 119	Sullivan, Meghan	69	Tao, Ran	75
Spieker, Andrew J.	18	Sullivan, Patrick F.	95	Tao, Yebin	8h
Srinivasan, Cidambi	122	Sun, Guang	33	Tarpey, Thaddeus	64, 96
Srivastava, Anuj	15, 34	Sun, Han	4i	Tatsuoka, Curtis	69
Srivastava, Kumar	128	Sun, Han	6c, 59, 72, 76, 128	Taub, Margaret A.	4n
Staicu, Ana-Maria	20, 89, 96, 112	Sun, Jianguo Sun, Jiayang	4i	Taylor, Jeremy M.G	49, 87, 88, 100, 107, 129, T7
Stamey, James D.	46	Sun, Lei	55	Tchetgen Tchetgen,	125, 17
Stanek III, Edward J.	50, 111, 117	Sun, Cei	89	Eric J.	8j, 33
Staniswalis, Joan	8e			Tcheuko, Lucas	104
Starr, Jacqueline	18	Sun, Wei	22	Tecson, Kristen M.	3f
starr, sacquenne	10	Sun, Wei	100		
		Sun, Wenguang	108		
	l	•	l		

Templin, Jonathan 69 Usset, Joseph 20 Wang, Jianxin 62 Teng, Ming 31 Uzzo, Robert G. Se Wang, Jing 116 Tenshaken, Randy 49 Valdar, William 32, 124 Wang, Linnming 64 Teran Hidalgo, Sebastian J. 10e Vander/Weele, Tyler 82, 16 Wang, Lianming 86 Thomason, Sathleen 7c Vander/Weele, Tyler 82, 16 Wang, Liu 66, 87, 115 Thompson, Laure 60 Verbeke, Geert 44, SC1 Wang, Lu 117 Thompson, Walley K. 25, 94 Viele, Kert 2k Wang, Min 3n Thomson, James A. 4r Vincent, Martin 104 Wang, Min 3n Thomson, James A. 4r Vincent, Martin 104 Wang, Min 3n Thomson, James A. 4r Victe, Kert 2k Wang, Min 3n Thos, James A. 4r Victe, Kert 2k Wang, Min 3n Tian, Lili 5a, 103 Wiritel, Andr	Teh, Yee Whye	56	Urdinola, B. Piedad	8f	Wang, Huixia J.	72
Tenhaken, Randy 49 Valdar, William 32, 124 Wang, Junhui 64 Teran Hidalgo, Sebastian J. 10e van der Laan, Mark J. 40, 92, 93, 99 Wang, Lilanming 86 Thall, Peter F. 106 VanderWeele, Tyler 82, 16 Wang, Lily 20, 122 Thompson, Laura 60 Verbeke, Geert 44, SC1 Wang, Lu 117 Thompson, Theodore J. 84 Vexler, Albert 3p Wang, Lu ojun 117 Thompson, Wesley K. 25, 94 Viele, Kert 2k Wang, Ming 18, 70, 81 Thomson, James A. 4r Vincent, Martin 104 Wang, Ming 37, 63 Tian, Lili 5a, 103 Viring, Beth A. 126 Wang, Ming 37, 63 Tian, Shulan 4r Victerbi, Andrew 117 Wang, Naichen 86 Tibushirani Robert J. 77 Vock, David M. 120 Wang, Naichen 86 Tiwari, Hemant K. 13 Volberg, Rehel A. 111 Wang, Neigtao 4k, 57, 62 T	Templin, Jonathan	69	Usset, Joseph	20	Wang, Jianxin	62
Teran Hidalgo, Schastian J. 10e van der Laan, Mark J. 40, 92, 93, 99 Wang, Liamming 86 Thall, Peter F. 106 VanderWeele, Tyler 82, T6 Wang, Lijja 115 Thomas, Kathleen 7c Verbeke, Geert 44, SC1 Wang, Lii 20, 122 Thompson, Laura 60 Versace, Francesco 62 Wang, Lu 66, 87, 115 Thompson, Wesley K. 25, 94 Verle, Albert 3p Wang, Luojun 117 Thomson, James A. 4r Vicele, Kert 2k Wang, Mei-Cheng 18, 70, 81 Tina, Lili 5a, 103 Virrilg, Beth A. 126 Wang, Min 3n Tina, Shulan 4r Viterbi, Andrew 117 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volk, David M. 120 Wang, Naisyin 72 Tiwari, Ram C. 54 Volk, David M. 120 Wang, Naisyin 72 Tiwari, Ram C. 54 Volk, David M. 120 Wang, Naisyin 72 Timari, Shulan	Teng, Ming	31	Uzzo, Robert G.	5e	Wang, Jing	116
Sebastian J. 10e VanderWeele, Tyler 82, T6 Wang, Lijia 115 Thall, Peter F. 106 Vandurci, Marina 32, 46, 83, 88 Wang, Lily 20, 122 Thomas, Kathleen 7c Verbeke, Geert 44, SC1 Wang, Lu 117 Thompson, Laura 60 Vexler, Albert 3p Wang, Lu ojun 117 Thompson, Wesley K. 25, 94 Viele, Kert 2k Wang, Luojun 117 Thompson, James A. 4r Vincent, Martin 104 Wang, Mei-Cheng 18, 70, 81 Than, Lili 5a, 103 Virrig, Beth A. 126 Wang, Min 3n Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naisyin 72 Tiwari, Hemart K. 13 Volberg, Rachel A. 111 Wang, Naisyin 72 Tiwari, Hemart K. 13 Volberg, Rachel A. 111 Wang, Silyin 72 Tong, Xin 46 Volp, Kevin G. 72 Wang, Silyin 123 Trixal, Yam Y. 32 <	TenHaken, Randy	49	Valdar, William	32, 124	Wang, Junhui	64
Thall, Peter F. 106 VanderWeele, Tyler 82.76 Wang, Lijia 115 Thomas, Kathleen 7c Verbeke, Geert 44, SC1 Wang, Lu 66, 87, 115 Thompson, Laura 60 Versace, Francesco 62 Wang, Lu 117 Thompson, Wesley K. 25, 94 Vele, Kert 2k Wang, Lujoun 117 Thomson, James A. 4r Vicele, Kert 2k Wang, Mei-Cheng 18, 70, 81 Tian, Shulan 4r Vicele, Kert 126 Wang, Minig 37, 63 Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naichen 86 Timari, Hamar K. 13 Volk, David 120 Wang, Naichen 86 Timari, Fam C. 54 Volk, David 120 Wang, Naichen 4k, 57, 62 Timari, Fam C. 54 Volk, David 50 Wang, Naichen 4k, 57, 62 Timari, Fam C. 54 Volk, David 50 Wang, Pein 57 Timari, Fam C. 54 Volk, David		10.	van der Laan, Mark J.	40, 92, 93, 99	Wang, Lianming	86
Thomas, Kathleen 7c Vannucci, Marina 32, 46, 83, 88 Wang, Lijy 20, 122 Thompson, Laura 60 Verbeke, Geert 44, SC1 Wang, Lu 66, 87, 115 Thompson, Theodore J. 84 Versace, Francesco 62 Wang, Lu 117 Thompson, Wesley K. 25, 94 Vicle, Kert 2k Wang, Mei-Cheng 18, 70, 81 Thompson, James A. 4r Vincent, Martin 104 Wang, Minc 3n Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naisyin 72 Tibshirari Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 111 Wang, Pei 57 Tong, Xin 46 Volk, David 50 Wang, Peig 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peig 30 Trixalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Sue-Jane 14 Tisali, Jerry W. 32 <td< td=""><td></td><td></td><td>VanderWeele, Tyler</td><td>82, T6</td><td>Wang, Lijia</td><td>115</td></td<>			VanderWeele, Tyler	82, T6	Wang, Lijia	115
Thompson, Laura 60 Verbeke, Geert 44, SC1 Wang, Lu 66, 87, 115 Thompson, Theodore J. 84 Versace, Francesco 62 Wang, Lu 117 Thompson, Wesley K. 25, 94 Viele, Kert 2k Wang, Luojun 117 Thompson, James A. 4r Vicle, Kert 2k Wang, Mei-Cheng 18, 70, 81 Tian, Lili 5a, 103 Virnig, Beth A. 126 Wang, Ming 37, 63 Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naisyin 72 Tibshirani Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 111 Wang, Naisyin 72 Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sujian 123 Trikalinos, Thomas A. 29 Wal			Vannucci, Marina	32, 46, 83, 88	Wang, Lily	20, 122
Thompson, Theodore J. 84 Versace, Francesco 62 Wang, Lu jun 117 Thompson, Wesley K. 25, 94 Viele, Kert 2k Wang, Luojun 117 Thompson, James A. 4r Vicle, Kert 2k Wang, Mei-Cheng 18, 70, 81 Tian, Lili 5a, 103 Virnig, Beth A. 126 Wang, Ming 37, 63 Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naisyin 72 Tibshirani Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 111 Wang, Naisyin 72 Tiwari, Ram C. 54 Volk, David 50 Wang, Neingtao 4k, 57, 62 Timari, Ram C. 54 Volk, David 50 Wang, Peng 30 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tinalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Sulpin 123 Tixal, Jac, Jac, Wang, Wang, Wang, Wang, Wang, Wang, Wang, Wan	,		Verbeke, Geert	44, SC1	Wang, Lu	66, 87, 115
Theodore J. 84 Vecler, Albert 3p Wang, Luojun 117 Thompson, Wesley K. 25, 94 Viele, Kert 2k Wang, Mei-Cheng 18,70,81 Thomson, James A. 4r Vincent, Martin 104 Wang, Min 3n Tian, Lili 5a, 103 Viring, Beth A. 126 Wang, Ming 37,63 Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naichen 86 Tibshirani Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 111 Wang, Ningtao 4k, 57, 62 Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Subjen 123 Tran, Van 33 Wahed, Abdus S. 34,35,60,87 Wang, Subjen 114 Trixalinos, Thomas A. 29 Waller, Melanie		60	Versace, Francesco	62	Wang, Lu	117
Thomson, James A. 4r Vincent, Martin 104 Wang, Min 3n Tian, Lili 5a, 103 Virnig, Beth A. 126 Wang, Ming 37, 63 Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naichen 86 Tibshirani Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 111 Wang, Ningtao 4k, 57, 62 Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sijian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Trixalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Wenyin 116 Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyin 116 Tsai, Jerry W. 32 Waller, Lance A. <td></td> <td>84</td> <td>Vexler, Albert</td> <td>3p</td> <td>Wang, Luojun</td> <td>117</td>		84	Vexler, Albert	3p	Wang, Luojun	117
Tian, Lili 5a, 103 Virnig, Beth A. 126 Wang, Ming 37, 63 Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naichen 86 Tibshirani Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 111 Wang, Ningtao 4k, 57, 62 Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sijian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60,87 Wang, Sue-Jane 14 Tirkalinos, Thomas A. 29 Waldorp, Lourens 97 Wang, Wenting 114 Trixal, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiaoshan 18 Tsai, Wan-Min 5d Waller, Lance	Thompson, Wesley K.	25, 94	Viele, Kert	2k	Wang, Mei-Cheng	18, 70, 81
Tian, Shulan 4r Viterbi, Andrew 117 Wang, Naichen 86 Tibshirani Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 111 Wang, Ningtao 4k, 57, 62 Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sijian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Tirkalinos, Thomas A. 29 Wakfield, Jon 101 Wang, Sue-Jane 14 Troxel, Andrea B. 72 Waldorp, Lourens 97 Wang, Wenting 114 Tsai, Jerry W. 32 Wall, Melanie 31,115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wall, Melanie 31,115 Wang, Xiao 10f Tsai, Wan-Min 5d Wall, Melanie	Thomson, James A.	4r	Vincent, Martin	104	Wang, Min	3n
Tibshirani Robert J. 77 Vock, David M. 120 Wang, Naisyin 72 Tiwari, Hemant K. 13 Volberg, Rachel A. 1111 Wang, Ningtao 4k, 57, 62 Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Sujian 123 Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sujian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Tikalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Wenyi 114 Trai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tsai, Wan-Min 5d Waller, Lance A. 38, 109 Wang, Xiao ing 40 Tsai, Wan-Min 5d Wang, Antai 114 Wang, Xiao shan 18 Tsokos, Chris P. 19 Wang, Antai<	Tian, Lili	5a, 103	Virnig, Beth A.	126	Wang, Ming	37, 63
Tiwari, Hemant K. 13 Volberg, Rachel A. 1111 Wang, Ningtao 4k, 57, 62 Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sijian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Trikalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Sue-Jane 14 Trixal, Jan, Sharia 72 Waldorp, Lourens 97 Wang, Wenyi 116 Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Jerry W. 32 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoshan 18 Tsodos, Chris P. 19 Wang, Antai 114 Wang, Xiaoshan 18 Tu, Shiyi	Tian, Shulan	4r	Viterbi, Andrew	117	Wang, Naichen	86
Tiwari, Ram C. 54 Volk, David 50 Wang, Pei 57 Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sijian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Trikalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Sue-Jane 14 Trixal, Andrea B. 72 Waldorp, Lourens 97 Wang, Wenting 114 Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Waller, Lance A. 38, 109 Wang, Xiao 10f Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xiaoshan 18 Tsodos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tsong, Yi	Tibshirani Robert J.	77	Vock, David M.	120	Wang, Naisyin	72
Tong, Xin 46 Volpp, Kevin G. 72 Wang, Peng 30 Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sijian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Trikalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Tao 24 Troxel, Andrea B. 72 Waldorp, Lourens 97 Wang, Wenting 114 Tsai, Jerry W. 32 Wall, Melanie 31,115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoshan 18 Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xiaoshan 18 Tsookos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tsong, Yi 2c, 11h, 48 Wang, Chenkun 73 Wang, Yapini 117 Tu, Shiyi <td>Tiwari, Hemant K.</td> <td>13</td> <td>Volberg, Rachel A.</td> <td>111</td> <td>Wang, Ningtao</td> <td>4k, 57, 62</td>	Tiwari, Hemant K.	13	Volberg, Rachel A.	111	Wang, Ningtao	4k, 57, 62
Tong, Xingwei 128 Wacholder, Sholom 33 Wang, Sijian 123 Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Trikalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Tao 24 Troxel, Andrea B. 72 Waldorp, Lourens 97 Wang, Wenting 114 Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tsai, Yan-Min 5d Waller, Lance A. 38, 109 Wang, Xiaoshan 18 Tsokos, Chris P. 19 Wang, Antai 114 Wang, Xiaoshan 18 Tsokos, Chris P. 19 Wang, Chen	Tiwari, Ram C.	54	Volk, David	50	Wang, Pei	57
Tran, Van 33 Wahed, Abdus S. 34, 35, 60, 87 Wang, Sue-Jane 14 Trikalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Tao 24 Troxel, Andrea B. 72 Waldorp, Lourens 97 Wang, Wenting 114 Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xingbin 4f Tsoong, Yi 2c, 11h, 48 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tu, Shiyi 3n Wang, Chenkun 73 Wang, Yapin 117 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Tu, Xin 114 Wang, Pewei 71 Wang, Yishi 7i Turley, Falynn C.	Tong, Xin	46	Volpp, Kevin G.	72	Wang, Peng	30
Trikalinos, Thomas A. 29 Wakefield, Jon 101 Wang, Tao 24 Troxel, Andrea B. 72 Waldorp, Lourens 97 Wang, Wenting 114 Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xiaoshan 18 Tsokos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xiipbin 4f Tsong, Yi 2c, 11h, 48 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tu, Shiyi 3n Wang, Chenkun 73 Wang, Yanpin 117 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Tu, Xin 114 Wang, Yan 71 Wang, Yifan 43, 62 Turley, Falynn C.<	Tong, Xingwei	128	Wacholder, Sholom	33	Wang, Sijian	123
Troxel, Andrea B. 72 Waldorp, Lourens 97 Wang, Wenting 114 Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xiaoshan 18 Tsookos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xingbin 4f Tsong, Yi 2c, 11h, 48 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tu, Shiyi 3n Wang, Chenkun 73 Wang, Yaping 48 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Tu, Xin 114 Wang, Pei 66 Wang, Yishi 7i Turley, Falynn C. 61 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying	Tran, Van	33	Wahed, Abdus S.	34, 35, 60, 87	Wang, Sue-Jane	14
Tsai, Jerry W. 32 Wall, Melanie 31, 115 Wang, Wenyi 116 Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tsiatis, Anastasios A. 28, 44 Walters, Ryan 69 Wang, Xiaoshan 18 Tsokos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xingbin 4f Tsong, Yi 2c, 11h, 48 Wang, Chenguang 100, 103, 116 Wang, Xingbin 4f Tu, Shiyi 3n Wang, Chenkun 73 Wang, Yaping 24 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaping 48 Tu, Xin 114 Wang, Dewei 71 Wang, Yifan 43, 62 Turley, Falynn C. 61 Wang, Fei 66 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130	Trikalinos, Thomas A.	29	Wakefield, Jon	101	Wang, Tao	24
Tsai, Wan-Min 5d Wallace, Meredith L. 76 Wang, Xiao 10f Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xingbin 4f Tsokos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tsong, Yi 2c, 11h, 48 Wang, Chenkun 73 Wang, Yanpin 117 Tu, Shiyi 3n Wang, Chi 6g Wang, Yaping 48 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Turley, Falynn C. 61 Wang, Dewei 71 Wang, Yishi 7i Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuanjia 64, 71, 99, 115 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115	Troxel, Andrea B.	72	Waldorp, Lourens	97	Wang, Wenting	114
Tseng, George C. 4f, 4l, 5c, 7h, 22, 53, 75, 102, 104, 126 Waller, Lance A. 38, 109 Wang, Xiaoling 40 Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xingbin 4f Tsokos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tsong, Yi 2c, 11h, 48 Wang, Chenkun 73 Wang, Yanpin 117 Tu, Shiyi 3n Wang, Chi 6g Wang, Yaping 48 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Turley, Falynn C. 61 Wang, Dewei 71 Wang, Yifan 43, 62 Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 71 Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 71 Wang, Yuanjia 64, 71, 99, 115	Tsai, Jerry W.	32	Wall, Melanie	31, 115	Wang, Wenyi	116
Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xingbin 4f Tsokos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tsong, Yi 2c, 11h, 48 Wang, Chenkun 73 Wang, Yanpin 117 Tu, Shiyi 3n Wang, Chi 6g Wang, Yaping 48 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Tu, Xin 114 Wang, Dewei 71 Wang, Yifan 43, 62 Turley, Falynn C. 61 Wang, Fei 66 Wang, Yishi 7i Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115	Tsai, Wan-Min	5d	Wallace, Meredith L.	76	Wang, Xiao	10f
Tsiatis, Anastasios A. 28, 44 Wang, Antai 114 Wang, Xiaoshan 18 Tsokos, Chris P. 19 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tsong, Yi 2c, 11h, 48 Wang, Chenkun 73 Wang, Yanpin 117 Tu, Shiyi 3n Wang, Chi 6g Wang, Yaping 48 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Tu, Xin 114 Wang, Dewei 71 Wang, Yifan 43, 62 Turley, Falynn C. 61 Wang, Fei 66 Wang, Yishi 7i Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115	Tseng, George C.	4f, 4l, 5c, 7h, 22, 53,	Waller, Lance A.	38, 109	Wang, Xiaoling	40
Tsokos, Chris P. 19 Wang, Antai 114 Wang, Xingbin 4f Tsong, Yi 2c, 11h, 48 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tu, Shiyi 3n Wang, Chenkun 73 Wang, Yanpin 117 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Tu, Xin 114 Wang, Dewei 71 Wang, Yifan 43, 62 Turley, Falynn C. 61 Wang, Fei 66 Wang, Yishi 7i Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115		75, 102, 104, 126	Walters, Ryan	69	Wang, Xiaoshan	18
Tsong, Yi 2c, 11h, 48 Wang, Chenguang 100, 103, 116 Wang, Xujing 24 Tu, Shiyi 3n Wang, Chenkun 73 Wang, Yanpin 117 Tu, Wanzhu 123 Wang, Chian 6g Wang, Yaping 48 Tu, Xin 114 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Turley, Falynn C. 61 Wang, Dewei 71 Wang, Yifan 43, 62 Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115			Wang, Antai	114	Wang, Xingbin	4f
Tu, Shiyi 3n Wang, Chenkun 73 Wang, Yanpin 117 Tu, Shiyi 3n Wang, Chi 6g Wang, Yaping 48 Tu, Wanzhu 123 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Tu, Xin 114 Wang, Dewei 71 Wang, Yifan 43, 62 Turley, Falynn C. 61 Wang, Fei 66 Wang, Yishi 7i Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115			Wang, Chenguang	100, 103, 116	Wang, Xujing	24
Tu, Wanzhu 123 Wang, Chi 6g Wang, Yaping 48 Tu, Xin 114 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Turley, Falynn C. 61 Wang, Dewei 71 Wang, Yifan 43, 62 Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115	Tsong, Yi	2c, 11h, 48	Wang, Chenkun	73	Wang, Yanpin	117
Tu, Xin 114 Wang, Chuan 101 Wang, Yaqun 4k, 57, 62 Turley, Falynn C. 61 Wang, Pei 66 Wang, Yishi 7i Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115	Tu, Shiyi	3n	Wang, Chi	6g	Wang, Yaping	48
Turley, Falynn C. 61 Wang, Dewei 71 Wang, Yifan 43, 62 Wang, Fei 66 Wang, Yishi 7i Turnbull, Bruce 74 Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115	•	123	Wang, Chuan	101	Wang, Yaqun	4k, 57, 62
Turnbull, Bruce 74 Wang, Fei 66 Wang, Yishi 7i Wang, Haiying 72, 125 Wang, Yuan 7l Tzeng, Jung-Ying 95 Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7l Wang, Yuanjia 64, 71, 99, 115	Tu, Xin	114	Wang, Dewei	71	Wang, Yifan	43, 62
Tzeng, Jung-Ying 95 Umbach, David M. 130 Wang, Haiying 72, 125 Wang, Yuan 89 Wang, Haonan 7I Wang, Yuanjia 64, 71, 99, 115	Turley, Falynn C.	61	Wang, Fei	66	Wang, Yishi	7i
Wang, Hao 22 Wang, Yuan 89 Umbach, David M. 130 Wang, Haonan 7I Wang, Yuanjia 64, 71, 99, 115		74	Wang, Haiying	72, 125	Wang, Yuan	71
Wang, Haonan 7 Wang, Yuanjia 64, 71, 99, 115	Tzeng, Jung-Ying	95	Wang, Hao	22	Wang, Yuan	89
Urbanek, Jacek 25, 112	Umbach, David M.	130	Wang, Haonan	71	Wang, Yuanjia	64, 71, 99, 115
	Urbanek, Jacek	25, 112				


Wang, Zhaoran	19	Wright, Fred A.	55	Xing, Fuyong	6g
Wang, Zhong	62	Wu, Changbao	127	Xiong, Momiao	20, 43, 62
Warren, Joshua L.	13, 38, 65	Wu, Chong	33	Xu, Guangning	11i
Watkins, Valerie J.	7i	Wu, Colin O.	123	Xu, Hongquan	102
Webber, Mayris	18	Wu, Gang	90	Xu, Hongyan	40, 50, 104
Webb-Vargas,	04	Wu, Han	83	Xu, Hui	76
Yenny G.	9d	Wu, Hao	SC4	Xu, Jian-Lun	129
Weeks, Daniel E.	75	Wu, Hongqian	81	Xu, Mengyuan	116
Weerahandi, Samaradasa	10d	Wu, Hulin	128	Xu, Tu	64
Wei, Changshuai	122	Wu, Jianrong	10g	Xu, Xiao	31
Wei, Hua	63	Wu, Jincao	124	Xu, Yaoyao	100
Wei, Lai	71	Wu, Jingwei	64	Xue, Lan	123
Wei, Peng	45, 71	Wu, Michael C.	10e, 11f, 90	Yabes, Jonathan	59
Wei, Susan	49	Wu, Pan	87	Yakir, Benjamin	41
Wei, Yingying	90	Wu, Qian	57	Yan, Song	75
Weintraub, William S.	61	Wu, Rongling	4k, 57, 62	Yang, Can	124
Weissfeld, Lisa A.	37	Wu, Song	90	Yang, Dan	47
Wellenius, Gregory A.	38	Wu, Tianshuang	11c	Yang, Hsih-Te	130
Wen, Xiaoquan	26	Wu, Wei	34	Yang, Jie	90
Weng, Yu-Ting	34	Wu, Wen-Chi	114	Yang, Jing	125
Wey, Andrew	99	Wu, Wensong	32	Yang, Jingjing	32
Wiedinmyer, Christine	109	Wu, Xiao	58	Yang, Lin	6g
Wiener, R. Constance	9c	Wu, Ying	49	Yang, Rendong	53
Wilding, Gregory	88	Wu, Zhenke	126	Yang, Song	17
Wilkins, Kenneth J.	2e	Xi, Dong	23	Yang, Yang	74
Williams, Brett	84	Xi, Mingyu	34	Yang, Yang	101
Williams, D'Ann L.	38	Xia, Changming	10g	Yang, Yuchen	6g
Williams, Robert J.	111	Xia, Kai	4h	Yap, Pew-Thian	89
Wilson, Alexander F.	43	Xia, Rong	8k	Ye, Changqing	30
Wilson, Ander	118	Xia, Xi	3c	Ye, Lei	37
Wilson, Janean	50	Xiao, Luo	10j	Ye, Shuyun	24
Wing, Mary Kate	75	Xiao, Tao	17	Yi, Grace	47
Wolf, Bethany J.	7d, 22	Xiao, Wei	6d	Yi, Hui	130
Won, Kyoung-Jae	57	Xie, Peijin	10d	Yi, Min	11a
Wong, Weng Kee	102	Xie, Sharon X.	125	Yi, Min	72
Wong, Yu-Ning	5e	Xie, Yuying	124	Yin, Jingjing	5a

Yin, Zhaoyu	4h	Zhang, Hao	8f	Zheng, Yingye	5g, 81
Youk, Ada O.	37, 60	Zhang, Hao Helen	6d, 42	Zhong, Ping-Shou	47
Young, Jessica G.	8j	Zhang, Heping	5d	Zhong, Wenxuan	42
Young, Nicolas L.	104	Zhang, Hongmei	30, 32, 46, 113	Zhou, Bo	80
Young, Robert	10c	Zhang, Jianliang	67	Zhou, Feng	47
Younkin, Samuel G.	4n, 24	Zhang, Jing	113, 126	Zhou, Hua	7 j
Yu, Bin	7p	Zhang, Jinghui	90	Zhou, Jin	2g
Yu, Binbing	10h	Zhang, Lijun	63	Zhou, Jing	113
Yu, Ching-Ray	10d	Zhang, Lin	15	Zhou, Minchun	11g
Yu, Menggang	100	Zhang, Linlin	88	Zhou, Qingning	6с
Yu, Shuli	50	Zhang, Min	25, 45	Zhou, Xiao-Hua	70, 79
Yu, Tianwei	53	Zhang, Na	11j	Zhou, Yan	57
Yu, Zhangsheng	123	Zhang, Nancy R.	41	Zhou, Yi-Hui	55
Yu, Zhaoxia	80	Zhang, Ruoxin	73	Zhou, Yong	76
Yu, Zhe	58	Zhang, Tingting	64	Zhu, Hongjian	48, 117
Yu, Ziji	2j	Zhang, Tong	19	Zhu, Hongtu	1e, 7n, 34, 89, 101
Yuan, Ying	21, 74, 101, 116	Zhang, Wei	86	Zhu, Hongxiao	32
Yue, Chen	89	Zhang, Xuekui	27	Zhu, Huirong	116
Yung, Godwin	130	Zhang, Yang	19	Zhu, Ji	57, 105, 124
Zaleski, Rosemary	8a	Zhang, Ying	81, 37, 76	Zhu, Jiawen	90
Zanke, Brent W.	4e	Zhang, Yiwei	45	Zhu, Liang	128
Zaslavsky, Alan M.	39, 60	Zhang, Yun	50	Zhu, Wei	4c
Zee, Jarcy	125	Zhang, Zhiwei	100	Zhu, Yeying	39
Zeig-Owens, Rachel	18	Zhang, Zugui	61	Zhu, Yu	32, 83, 130
Zeng, Donglin	11f, 59, 64, 70, 75, 99, 100, 129	Zhao, Hongyu	41, 71, 124	Zhu, Yun	43
Zeng, Peng	42	Zhao, Jinying	43	Zhu, Yunzhang	30
Zeng, Zhen	4j	Zhao, Jiwei	127	Ziegler, Regina G.	33
Zhan, Jia	87	Zhao, Ni	90	Zigler, Corwin	61
Zhan, Xiang	45, 121	Zhao, Sihai D.	45	Zimmerman, Dale	116
Zhang, Anru	73	Zhao, Tuo	14	Zink, Richard C.	54
Zhang, Daowen	72	Zhao, Yihong	62	Zipunnikov, Vadim	62, 89, 98, 112
Zhang, Fanni	124	Zhao, Yingqi	100	Zoellner, Sebastian	82
Zhang, Fanni Zhang, Guangyu	84	Zhao, Zhigen	48	Zou, Kelly H.	10d
Zilaliy, Gualiyyu	U 1	Zheng, Jolene	8i	Zou, Fei	4h
		Zheng, Qi	49	Zubizarreta, Jose	61
		Zheng, Wenjing	92	Zylbersztejn, Anna	68


GRAND BALLROOM FLOOR PLAN

HARBORSIDE BALLROOM FLOOR PLAN

WATERVIEW BALLROOM FLOOR PLAN

