ESAR Spring Meeting With IMS & Sections of ASA MARRIOTT AUSTIN | AUSTIN, TX

Welcome

Welcome! It is my great pleasure to introduce the 2016 ENAR Spring Meeting to be held at the JW Marriott Austin, in Austin, Texas, from March 6-9. The ENAR Spring Meeting brings together researchers and practitioners from academia, industry and government, connected through a common interest in Biometry. It offers a unique opportunity for learning new exciting methods and software, hearing about interesting and impactful applications, meeting new people (including prospective employers and job candidates), and reconnecting with friends, and, this year, getting a break from the cold and snowy winter. The ENAR Spring Meeting only happens through the diligent work of a large number of people who organize and contribute to the program, plan and oversee the meeting logistics, and help with sponsorship my heartfelt gratitude to all of them.

Scientific Program: Through the leadership of Program Chair Wei Sun, of University of North Carolina at Chapel Hill, and Associate Chair Laura Hatfield, of Harvard University, and with contributions from many of you, the Program Committee (with representatives from 11 ASA sections and 4 ENAR at-large members) has created an outstanding invited program. The sessions cover a wide range of topics of great interest to both researchers and practitioners, such as, data sciences (big data), precision medicine, genomics, clinical trials, neuroimaging, biomarkers, health policy, electronic health records, and epidemiology. The IMS invited program, assembled under the leadership of IMS Program Chair Babak Shahbaba, of the University of California-Irvine, also features an exciting array of sessions that nicely complement and promote synergies with the ENAR invited program.

Poster presentations will, once again, be a vibrant part of the scientific program. In addition to contributed and invited posters, the 2016 ENAR Spring Meeting will continue contributed oral poster sessions (first featured in the 2015 meeting), in which presenters will be able to give a two-minute elevator-speech on the highlights of their posters. The contributed oral sessions, to be held on Monday, will be organized by themes, will feature two invited posters from wellknown researchers, and will run parallel to the rest of the sessions in the scientific program. As in previous years, the regular contributed and invited posters will be presented Sunday evening, during the Opening Mixer. The highly popular ENAR Regional Advisory Board (RAB) poster competition will include contributed posters from the Sunday session only.

Educational Program: Be sure to take

advantage of the unique and varied learning opportunities that the 2016 ENAR Spring Meeting has to offer through its superb program of short courses, tutorials and roundtables, assembled by the Educational Advisory Committee. Presented by well-known experts in their respective fields, the short courses and tutorials will cover a variety of topics of great interest to meeting attendees, including: statistical analysis of network data, missing data in regression models, introduction to statistical machine learning, statistical genetic and genomic analysis of complex traits with GWAS and next generation sequencing data, Bayesian evidence synthesis in medicine, practical solutions for simple problems with bad consequences in clinical trials, clinical trial designs for validating biomarkers, a new paradigm for finding the subset of patients who benefit from a test treatment, quantile regression for survival analysis, adaptive designs for confirmatory clinical trials, and software applications for high-performance computing, interactive data visualizations. and high throughput DNA sequence data analysis. A favorite of many who come to the meeting, roundtable luncheons, will also be featured in the program. Distinguished statisticians from academia, government, and industry will lead the luncheon discussions on topics ranging from how to publish without perishing to quantitative safety review, big data in healthcare evaluation, and practical considerations for teaching Biostatistics in a hybrid, blended, or online format.

Keynote Lectures: The Presidential Invited Address and the IMS Medallion Lecture are two of the high points of the ENAR Spring Meeting program, delivered by highly accomplished thought leaders in Biometry. I am honored to introduce Dr. Xihong Lin, Henry Pickering Walcott Professor of Biostatistics and Chair of the Department of Biostatistics at the Harvard University, as the 2016 Presidential Invited Speaker. Her lecture will be on "Biostatistics, Biomedical Informatics, and Health Data Science: Research and Training." Prof. Lin has been an inspirational role model for a long time. She has made significant contribution to development and application of statistical and computational methods for complex data from observational studies and in recent years analysis of massive genetic and genomic, epidemiological, environmental, and medical data. She received the 2002 Mortimer Spiegelman Award from the American Public Health Association and the 2006 COPSS Presidents' Award. She is an elected fellow of ASA, IMS, and ISI. She received the MERIT Award (R37) (2007-2015) and recently the Outstanding Investigator Award (OIA) (R35) (2015-2022), as

the only awardee who is a statistician, from the National Cancer Institute, which provide long-term research support to experienced investigators with outstanding records of cancer research productivity who propose to conduct exceptional research. She is the contacting PI of the Program Project (PO1) on Statistical Informatics in Cancer Research, and the T32 training grant on interdisciplinary training in statistical genetics and computational biology. She was the former Chair of the COPSS (2010-2012) and a former member of the Committee of Applied and Theoretical Statistics (CATS) of the National Academy of Science. She was the former Coordinating Editor of Biometrics and the founding co-editor of Statistics in Biosciences, and is currently the Associate Editor of Journal of the American Statistical Association and American Journal of Human Genetics. She has served on a large number of statistical society committees, and NIH and NSF review panels.

The IMS Medallion Lecture, entitled "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," will be presented by Dr. Peter J Diggle, Distinguished University Professor of Statistics in the Faculty of Health and Medicine at Lancaster University. He also holds Adjunct positions at Johns Hopkins, Yale and Columbia Universities, and is president of the Royal Statistical Society (2014-2016). Prof Diggle's research involves the development of statistical methods for spatial and longitudinal data analysis, motivated by applications in the biomedical, health and environmental sciences. He has published 10 books and more than 200 articles on these topics. He was awarded the Royal Statistical Society's Guy Medal in Silver in 1997 and is a former editor of the Society's Journal, Series B. In 2001 he was elected as a Fellow of the American Statistical Association. He was founding co-editor of the journal "Biostatistics" between 1999 and 2009, and is a Trustee for Biometrika.

Additional Meeting Activities: The 2016 ENAR Spring Meeting will feature a host of other activities in addition to the scientific and educational programs. On Sunday, March 6, there will be the Fostering Diversity in Biostatistics Workshop, organized by Simone Gray, of the Centers for Disease Prevention and Control, and Sean Simpson, of Wake Forest School of Medicine. The Student Mixer on Monday evening and the Tuesday luncheon event organized by the Council of Emerging and New Statisticians (CENS) will provide ample networking opportunities for students and recent graduates. Meeting attendees seeking employment and prospective employers will benefit from the vibrant Career Placement Center. Be sure to visit the exhibitors' area to browse the latest books and software in your field.

We have arranged an evening of dining, entertainment, and networking at a social event unique to Austin. We'll begin with dinner at the Iron Cactus, one of Austin's best-known Mexican restaurants, located on the famous Sixth Street in the music district. After dinner, we will walk a couple of blocks to Esther's Follies. An Austin tradition and theatric landmark, Esther's bills itself as "Texas' premiere magic & musical comedy troupe since 1977." The show combines elements of political and social satire (a sort of Second City Texas-style), stage magic, musical parody, and old-style burlesque.

Meeting Venue: The conference will be held at newly built JW Marriott Austin hotel, which opened in February 2015. Situated in the heart of the downtown area, this luxury hotel is just a 15-minute drive from Austin International Airport. Located on Congress Avenue between 2nd and 3rd Streets, the hotel is within walking distance of enticing restaurants and bars, 6th Street, the Capitol, and local attractions.

Acknowledgements: This meeting would not happen without the dedication and leadership of Kathy Hoskins, the ENAR Executive Director. Kathy is the institutional memory of ENAR and each year patiently guides incoming presidents-elect, like myself, on the how-to's of organizing the Spring Meeting. My heartfelt thanks to Kathy and the ENAR team, Katie Earley, and Beatrice Contreras for all the great work they have put into the meeting organization. I am also very grateful to the Local Arrangements Committee, led by Michael Daniels, of the University of Texas at Austin, for their critical work towards the success of the ENAR meeting.

Hope to see you in beautiful Austin for the 2016 ENAR Spring Meeting!

Sincerely,

Jianwen Cai ENAR 2016 President Kathy Hoskins ENAR Executive Director

ASA With IMS and Sections of σ 9

- 2 Welcome and Overview
- **5** General Information
- 8 Austin Highlights
- **10** Special Thanks
- **11** Presidential Invited Speaker
- **13** IMS Medallion Lecture
- **15** Program Summary
- 22 Scientific Program
- **94** Short Courses
- **99** Tutorials
- **103** Roundtables
- **105** Student Opportunities
- **106** Career Placement Services
- **108** Meeting Registration Form
- **109** Membership Form

ENAR 2016 General Information

Location

JW Marriott Austin | Austin, Texas 110 E. 2nd Street | Austin, Texas 78701 Phone: (512)–474-4777 http://www.jwmarriottaustin.com

Registration Hours

Saturday, March 5:	3:00 pm to 5:00 pm
Sunday, March 6:	7:30 am to 6:00 pm

What is included in the Registration Fee?

The meeting registration fee includes all refreshment and beverages during breaks and the opening mixer. The registration fee, less a \$100 administrative fee, is refundable if written notice of cancellation is received by February 1, 2016.

Short Courses

The 2016 ENAR meeting will begin with an exciting set of short courses on Sunday, March 6. Please refer to the chart included on this page for the registration fees for these Short Courses. We recommend registering in advance, since the courses close once they are full. Use either the registration form on page 108 or the electronic registration form available on the ENAR website.

Tutorials

Tutorials will be offered on Monday and Tuesday, and are held concurrent with the scientific program. These offerings provide a presentation of a continuing education topic in a briefer time period (1 hour and 45 minutes). Fees for the tutorials are \$75 for members (\$85 after February 1, 2016) and \$85 for non-members (\$95 after February 1, 2016). The student registration fee for the tutorials is \$40 (\$50 after February 1, 2016). Be sure to register in advance, since tutorials will be closed once they are full.

Roundtable Luncheons

This year, the roundtable luncheons will be held on Monday, March 7, from 12:15 to 1:30 pm. Space for each roundtable is limited and pre-registration is recommended. The fee is \$40 per person and includes lunch. For full descriptions of the roundtable discussion topics, please refer to pages 103 - 105.

B ENAR

	By Feb.1	After Feb.1	
ENAR/ WNAR/ IBS Member	\$400	\$475	
ASA Member (Not a member of ENAR/ WNAR/ IBS)	\$540	\$615	
IMS Member (Note a Member of ENAR/ WNAR/ IBS) (\$420 – \$20 IMS contribution: \$400)	\$400	\$475	
Student Member	\$165	\$175	
Guest Fee	\$85	\$95	
Non-member (of any participating society)	\$590	\$665	
Student Non-member	\$200	\$210	

	By Feb.1		After Feb.1	
	Half Day	Full Day	Half Day	Full Day
Member	\$225	\$325	\$250	\$350
Non-Member	\$275	\$375	\$300	\$400
See Pages 94 – 98 for Course Details				
Register for Two Half Day Courses and Save!				
Savings Information Provided on Page 94				

Short Course Registration Fees

ENAR 2016 General Information

New Member Reception, Opening Mixer, and Poster Session. A new member reception will be held from 7:30 to 8:00 pm on Sunday, March 6. All new ENAR members are cordially invited to attend. The Opening Mixer and Poster Session (which is included in the meeting registration fee) will take place from 8:00 to 11:00 pm on Sunday, March 6.

Council for Emerging and New Statisticians (CENS)

CENS is dedicated to better informing ENAR about the needs of students and recent graduates. The goal at the 2016 Spring Meeting is to improve the networking experience for all attendees. CENS will organize lunches on Tuesday, March 8, 2016 for groups of attendees that share similar interests. The goal is to help attendees meet and network with each other. Although CENS will help to coordinate lunch at local restaurants, please note that lunch is at your own expense and CENS will not be able to cater to special dietary requirements. Closer to the meeting time, CENS will email all attendees interested in this networking event to request information to set up the groups and the lunch reservations. Students and recent graduates are especially encouraged to sign up for this networking event.

CENS Student Mixer

All students are invited to attend the CENS student mixer on Monday, March 7, from 5:30 to 6:30 pm. Registration is not required – so please stop by!

Placement Service

ENAR will conduct a job placement service at the 2016 Spring Meeting. Additional information regarding the placement center is located on page 106.

JW Marriott Austin

110 E 2nd Street | Austin, TX 78701 Phone: (512)–474-4777 http://www.jwmarriottaustin.com

Room Reservations

ENAR has negotiated a group hotel room rate of **\$199.00** for single and double occupancy rooms.

Cut-off date: All reservations must be made by **February 12, 2016**. To receive this special ENAR meeting rate, you must make your reservations directly with the JW Marriott Austin at (512) - 474 - 4777. Be sure to mention that you are with the ENAR 2016 Spring Meeting when you make your reservations. *Please make your reservations early, as all hotel rooms are reserved on a first-come, first-served basis.*

Parking at the JW Marriott Austin

The hotel offers on-site self-parking at the rate of \$30 per day. Valet parking is also available for a fee of \$37 per day. *These parking rates are not inclusive of tax.*

Transportation

Austin-Bergstrom International Airport (AUS)

- » Approximately 11 miles from the JW Marriott Austin. The hotel does not provide shuttle service.
- » Estimated taxi fare to/from the meeting hotel is \$30 USD (one way).
- » SuperShuttle is available to/from the meeting hotel. Reservations are required. Approximate fee is \$15 USD (one way).

New For the 2016 Spring Meeting!

ENAR is going mobile in 2016 with our **Spring Meeting app!** We have teamed up with CrowdCompass to build an app that will make this year's meeting more valuable for our attendees, sponsors, exhibitors, and speakers. The app will provide a new way for you to experience the ENAR Spring Meeting and will be accessible on your iPhone, iPad, or Android! Just a few of the great features on our app include:

- Access to the full program book » including scientific sessions, program schedule, and all abstracts
- Learn more about the exhibitors and locate » their booths more easily
- Receive meeting updates as they happen »
- See who's attending the meeting and share » contact information

Program Options

At the 2016 Spring Meeting, the full final program will be available on the ENAR meeting website. You will also be able to receive the final program book via the following delivery formats:

- Mobile App includes access to the full program book, with abstracts (available to all attendees that opt to download the app)
- Small program booklet containing all ses-» sion and speaker names, session times, and locations (please refer to the registration form on page 108 and select this option when registering)

Note: The large final program & abstract book will no longer be printed and can only be accessed via the ENAR website.

ENAR Meetng Mobile App

Tuesday Evening Networking & Dinner Event

We have arranged an evening of dining, entertainment, and networking at a social event unique to Austin. We'll begin with dinner at the Iron Cactus, one of Austin's best-known Mexic restaurants, located on the famous in the music district. After dinne couple of blocks to Esther's Follies dition and theatric landmark, Esther soills itself as "Texas' premiere magic & musical comedy troupe since 1977."

The show combines elements of political and sort of Second City Texas-style), sical parody, and old-style burthe show, you can make the short ick to the Marriott or stay and further explore the Sixth Street bar and music scene. (Please note that there will be a cash bar at both locations and that the registration fee does not include the cost of alcoholic beverages).

Welcome to Austin!

Welome to Austin! Famous for keeping it weird, Austin, Texas, is a hub of creativity and music with a burgeoning restaurant scene and unique culture that makes it easy to see why it ranks high on many lists. What was once a small university town is now one of the fastest-growing cities as the tech boom, good weather, cost of living, and cool factor attract start-ups, accelerators, investors, and job seekers. The self-proclaimed "Live Musical Capital of the World" is so much more – the capital of Texas, Bat City, champions of buy/eat local, and home to festivals year-round – that visitors will have a hard time fitting everything in. Pick up a copy of the Austin Chronicle to find a current calendar of events.

Food

While Texas BBQ wars are legendary, Austin is home to a thriving and diverse food scene where sushi bars and European bistros rub shoulders with traditional Tex-Mex, Southern cooking, and the ubiquitous breakfast taco. Plus with over 1500 food trucks, there is plenty of opportunity to sample a smorgasbord of treats.

Live Music

Country, rock, folk, punk, jazz, classical, bluegrass, hip-hop – you can find it here. With music at the airport, in the coffeehouses, grocery stores, bars, venues, and outdoor spaces, Austin has over 250 venues that feature live music each day and night.

Bats (!)

From March to October, the Ann Richards Congress Avenue Bridge is home to the world's largest urban colony of Mexican free-tailed bats. People gather every evening around sunset to witness the mass exodus of the bats as they participate in a nightly ritual of controlling our insect population.

Outdoors

A mild, sunny climate with lots of green space for walking, biking and exploring paired with many public swimming pools makes Austin a place to enjoy the outdoors. Take a walk on Town Lake Hike and Bike trail that goes around Lady Bird Lake, go for a swim at Barton Springs or Deep Eddy, or rent a bicycle to explore the city's quirky neighborhoods.

Downtown: Home of the Texas State Capitol, built in 1888, with its pink-granite, soaring dome, and interior mosaic floor honoring the five flags of Texas. Follow a visit to the State Capitol with a quick drink at the Cloak Room – the nearby underground dive bar where legislators gather to make the real deals. Downtown is also home to the infamous 6th Street – a six-block area that is home to more than 50 bars, clubs, restaurants, comedy clubs, the historic Driskill Hotel and Littlefield buildings, the Museum of the Weird, and the Alamo Drafthouse Ritz Theatre.

Rainey Street: With its neighborhood roots showing, the Rainey Street district features restaurants and bars tucked away in cozy bungalows, retrofitted shipping containers, and outside patio spaces. Highlights include G'Raj Mahal, Clive, Blackheart, and Banger's Sausage & Beer Garden. Be warned – there will be dogs.

East Austin: One of the fastest-growing areas in town, East Austin is home to some of the city's oldest blues and jazz clubs, over 250 artist studios, quirky murals, food trucks, and hipster bars. The Texas State Cemetery is the final resting place for such Texas legends as Stephen F. Austin, Darrell Royal, Ann Richards, Barbara Jordan, and Bob Bullock. **South Austin:** South Austin is what many locals refer to as "old Austin" – quaint neighborhoods, funky shops, long-running restaurants, and a laidback hippie vibe. A popular bumpersticker reads "South Austin: We're all here 'cause we're not all there." South Congress (SoCo) offers eclectic shopping at local shops (Uncommon Objects, Allen's Boots, South Congress Books, Tesoros Trading Company), restaurants, food trailers, and the legendary Continental Club that showcases quality rockabilly, country, and swing bands.

The University of Texas at Austin: Located just north of the Texas Capitol, The University of Texas at Austin is a 350-acre campus that includes the UT Tower, the Blanton Museum of Art, the LBJ Library and Museum, the Harry Ransom Center, the Texas Memorial Museum, and of course, Memorial Stadium, home of the Longhorns. Just west of campus is The Drag where you can find restaurants, trendy shops, and the University Co-op where you can buy your burntorange memorabilia.

Additional information on Austin is also available from the Austin Convention and Visitors Bureau: http://www.austintexas.org.

Special Thanks!

2016 ENAR Program Committee

Wei Sun,

Program Chair

at Chapel Hill

Laura Hatfield,

Harvard University

Babak Shahbaba,

Michael L. Cohen

Michael P. Cohen

Methods Section

ASA Statistics in Epidemiology Section

Harvard University

Shane Jensen

Jian Kang

ASA Survey Research

Sebastien Haneuse

ASA Statistics in Defense and National Security Section

IMS Program Chair

University of North Carolina

Associate Program Chair

University of California, Irvine

ASA Section Representatives

Committee on National Statistics

American Institutes for Research

ASA Bayesian Statistical Science

ASA Statistics in Imaging Section

University of Pennsylvania

University of Michigan

University of Michigan

ASA Statistics in Genomics and Genetics Section

Seunggeun Lee

Olga Marchenko ASA Biopharmaceutical Section Quintiles

Mary D. Sammel ASA Biometrics Section University of Pennsylvania

Yuanjia Wang ASA Section on Mental Health Statistics Columbia University

Samuel P. Wilcock ASA Statistical Education Section Messiah College

Tingting Zhang ASA Statistical Learning and Data Mining Section University of Virginia

ENAR At-Large Members

Stacy Lindborg Biogen Idec John Scott US Food and Drug Administration Guosheng Yin University of Hong Kong

Mei-Cheng Wang John Hopkins University

Education Advisory Committee

Jianwen Cai 2016 ENAR President University of North Carolina at Chapel Hill

Frank Bretz Novartis Pharmaceuticals Amita Manatunga Emory University

Yuanjia Wang Columbia University

Donglin Zeng University of North Carolina at Chapel Hill

Fei Zou University of North Carolina at Chapel Hill

Local Arrangements Chair

Mike Daniels University of Texas at Austin

ENAR Student Awards 2016

DuBois Bowman Columbia University

ENAR Diversity Workshop 2016

Simone Gray, Co-Chair Centers for Disease Control and Prevention Sean L. Simpson, Co-Chair Wake Forest School of Medicine

ENAR Executive Team

Kathy Hoskins Executive Director

Katie Earley Program Manager

Beatrice Contreras Administrator

Challee Blackwelder Graphic Designer

Xihong Lin, PhD

Chair and Henry Pickering Walcott Professor Department of Biostatistics | Harvard University

Biostatistics, Biomedical Informatics, and Health Data Science: Research and Training

Biostatistics has played a pivotal role in both the development and success of basic science, public health, and

medical research by developing statistical methods for study design and data analysis. Massive 'ome data, including genome, exposome, and phenome data, are becoming available at an increasing rate with no apparent end in sight. Examples include Whole Genome Sequencing data, large-scale remote-sensing satellite air pollution data, digital phenotyping data, and Electronic Medical Records. The emerging field of Health Data Science (HDS) presents biostatisticians with many research and training opportunities and challenges. It has propelled us to rethink our identity and niche and how we can properly position ourselves as a leader in HDS, especially in promoting and advancing statistical inference in health data science research and training. Success will both for biostatistics and for much of health and biomedical science

that we effectively position ourselves together with bio- and medical informaticians, as leading health data scientists. There are countless of examples where the volume of available data requires new, scalable statistical methods and demand an investment in statistical research. These include signal detection, network analysis, integrated analysis of different types and sources of data, and incorporation of domain knowledge in health data science method development. Especially critical is training the next generation of health data scientists, which include not only providing broader training of health and biomedical researchers in sound statistical inference, but also that integrate computer and information science and machine learning into established biostatistical curriculum. Such enhanced training could include both didactic and EdX courses, but will require a careful balance of depth and breadth across areas. In this talk, I discuss some of the challenges and opportunities, and illustrate them using statistical genetics and genomics as examples.

Biography

Xihong Lin is Chair and Henry Pickering Walcott Professor of Department of Biostatistics and Coordinating Director of the Program of Quantitative Genomics at the Harvard T. H. Chan School of Public Health. She received BS in Applied Mathematics from Tsinghua University, China and PhD in Biostatistics from University of Washington. Dr. Lin's research interests lie in development and application of statistical and computational methods for analysis of massive genetic and genomic, epidemiological, environmental, and medical data. She currently works on whole genome sequencing association studies, genes and environment, analysis of integrated data, and statistical methods for massive health science data.

Dr. Lin received the 2002 Mortimer Spiegelman Award from the American Public Health Association and the 2006 COPSS Presidents' Award. She is an elected fellow of ASA, IMS, and ISI. Dr. Lin received the MERIT Award (R37) (2007-2015), and recently the Outstanding Investigator Award (OIA) (R35) (2015-2022) from the National Cancer Institute, which provides "long-term research support to experienced investigators with outstanding records of cancer research productivity who propose to conduct exceptional research." She is the contacting PI of the Program Project (PO1) on Statistical Informatics in Cancer Research, and the T32 training grant on interdisciplinary training in statistical genetics and computational biology.

Dr. Lin was the former Chair of the COPSS (2010-2012) and a former member of the Committee of Applied and Theoretical Statistics (CATS) of the National Academy of Science. She is the Chair of the new ASA Section of Statistical Genetics and Genomics. She was the former Coordinating Editor of *Biometrics* and the founding co-editor of *Statistics in Biosciences*, and is currently the Associate Editor of *Journal of the American Statistical Association* and *American Journal of Human Genetics*. She has served on a large number of statistical society committees, and NIH and NSF review panels.

Peter J. Diggle, PhD

CHICAS, Medical School, Lancaster University

Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings

In low-resource settings, disease registries do not exist, and prevalence mapping relies on data collected through a finite,

often spatially sparse, set of surveys of communities within the region of interest, possibly supplemented by remotely sensed images that can act as proxies for environmental risk factors. A standard geostatistical model for data of this kind is a generalized linear mixed model,

$$\begin{split} Y_i &\sim Bin\{m_i, P(x_i)\}\\ log[P(x_i) / \{1\text{-}P(x_i)\}] = &z(x_i)' \beta + S(x_i), \end{split}$$

where Y_i is the number of positives in a sample of m_i individuals at location x_i , z(x) is a vector of spatially referenced explanatory variables and S(x) is a Gaussian process.

In this talk, I will first review statistical methods and software associated with this standard model, then consider several methodological extensions whose development has been motivated by the requirements of specific applications. I will focus in particular on prevalence mapping projects that have arisen in connection with pan-African control programs for onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis). These vectorborne diseases are major public health problem in the wet tropical regions of the world, including most of sub-Saharan Africa. Multi-national control programs using mass administration of a protective drug, Mecitzan, have been very successful, with more than 60 million treatments to date over 19 countries. However, the programs has been hampered by the recognition that people heavily infected with a third disease, Loa loa (eyeworm) parasite, are at risk of severe, occasionally fatal, adverse reaction to Mectizan. Before the drug is administered in a community, it is relatively easy to estimate the prevalence of eveworm infection, harder (and more expensive) under field conditions to estimate how many people are "heavily infected," one definition of which is that they as carrying more than 8,000 parasites per ml of blood. To address this problem we develop a joint model for communitylevel prevalence and the proportion of highly infected individuals in the community.

Biography

Peter Diggle is Distinguished University Professor of Statistics in the Faculty of Health and Medicine, Lancaster University. He also holds Adjunct positions at Johns Hopkins, Yale and Columbia Universities, and is president of the Royal Statistical Society (2014-2016)

Between 1974 and 1983 Prof Diggle was a Lecturer, then Reader in Statistics at the University of Newcastle upon Tyne. Between 1984 and 1988 he was Senior, then Principal, then Chief Research Scientist and Chief of the Division of Mathematics and Statistics at CSIRO, Australia. He has worked at Lancaster University since 1988, and held a joint appointment with the University of Liverpool from 2012 to 2015. Between 2004 and 2008 he held a UK Engineering and Physical Sciences Senior Fellowship. Prof Diggle's research involves the development of statistical methods for spatial and longitudinal data analysis, motivated by applications in the biomedical, health and environmental sciences. He has published 10 books and more than 200 articles on these topics in the open literature.

He was awarded the Royal Statistical Society's Guy Medal in Silver in 1997 and is a former editor of the Society's Journal, Series B. In 2001 he was elected as a Fellow of the American Statistical Association. He was founding co-editor of the journal "Biostatistics" between 1999 and 2009, and is a Trustee for *Biometrika*. He has served the UK Medical Research Council as a member of their Population and Systems Medicine Research Board, Training and Careers Group and Population Health Group, and the Welcome Trust as a member of their Advisory Group in Sustaining Health.

Sunday March 6

7:30 am - 6:30 pm	Conference Registration
8:00 am - 12:00 pm	Short Courses
SC4:	Statistical Genetic and Genomic Analysis of Complex Traits with GWAS and Next Generation Sequencing Data
SC5:	Bayesian Evidence Synthesis in Medicine
8:00 am - 5:00 pm	Short Courses
SC1:	Missing Data in Regression Models
SC2:	Statistical Analysis of Network Data
SC3:	Introduction to Statistical Machine Learning
12:30 am - 5:30 pm	Diversity Workshop
1:00 pm - 5:00 pm	Short Courses
SC6:	Practical Solutions for Simple Problems with Bad Consequences in Clinical Trials
3:00 pm - 6:00 pm	Exhibits Open
4:30 pm - 7:00 pm	ENAR Executive Committee
4:00 pm - 6:30 pm	Placement Service
8:00 pm - 11:00 pm	Social Mixer and Poster Session
1.	Posters: Latent Variables and Mixture Models
2.	Posters: Imaging and Spatiotemporal Applications
3.	Posters: Clinical Trials, Adaptive Designs, and Applications
4.	Posters: Survival Analysis
5.	Posters: Causal Inference
6.	Posters: Statistical Genetics, GWAS, and 'Omics Data
7.	Posters: Methodology and Applications in Epidemiology, Environment, and Ecology
8.	Posters: Variable Selection and Methods for High Dimensional Data
9.	Posters: Bayesian Methods and Computational Algorithms
10.	Posters: Semi- and Non-parametric Methods
11.	Posters: Censoring, Truncation, and Missingness
12.	Posters: Classification, Testing, and Networks
13.	Posters: Repeated Measures
14.	Posters: Special Topic

Monday	March 7
7:30 am - 5:00 pm	Conference Registration
7:30 am - 5:00 pm	Speaker Ready Room
9:00 am - 5:00 pm	Placement Service
8:30 am - 5:30 pm	Exhibits Open
8:30 am - 10:15 am	Tutorial
11:	Topics in High-Performance Computing with R
	Scientific Program
15.	Statistical Advances in Functional and Single Cell Genomics
16.	Statistical Considerations and Challenges in Evaluating Vaccine Efficacy
17.	Recent Advances in Subgroup Identification for Clinical Trial Regulatory Science
18.	What I Know Now: Advice on Maximizing Graduate School and Early Career Experience
19.	Precision Medicine: Statistical Challenges and Opportunities
20.	Innovative Statistical Methodology for Modeling Growth in Fetuses, Children, and Adolescents
21.	Recent Advances in Lifetime Data Analysis
22.	Analysis of Longitudinally Observed Functional Data
23.	Contributed Papers: Adaptive Designs and Adaptive Randomization
24.	Contributed Papers: Clinical Trials
25.	Contributed Papers: Clustered Data Methods
26 .	Contributed Papers: High Dimensional Modeling and Inference
27.	Contributed Papers: Prediction and Prognostic Modeling
9:30 am - 4:30 pm	Placement Service
10:15 am - 10:30 am	Refreshment Break with Our Exhibitors
10:30 am - 12:15 pm	Tutorial
T2:	Interactive Data Visualizations in R with shiny and ggplot2
	Scientific Program
28.	Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis
29 .	Recent Advances and Challenges in Adaptive Design for Clinical Trials
30.	Health Care Provider Evaluation
31.	The Future of Biostatistical Funding Mechanisms

10:30 am - 12:15 pm Scientific Program (continued)

- 32. Computer-intensive Bayesian Techniques and Neurostatistics: A Peaceful Co-existence?
- 33. Survival Analysis and Genetics
- 34. Missing Data in Non-inferiority Trials
- 35. IMS Medallion Lecture
- 36. Contributed Papers: Analysis of Imaging Data
- 37. Contributed Papers: Bayesian Clinical Trials
- 38. Contributed Papers: Diagnostic and Screening Tests
- 39. Contributed Papers: Longitudinal Data
- 40. Oral Posters: Machine Learning

12:15 pm - 1:30 pm Roundtable Luncheons

12:30 pm - 4:30 pm **Regional Advisory Board (RAB) Luncheon Meeting** (by Invitation Only)

1:45 pm - 3:30 pm Tutorial

 T3:
 Clinical Trial Designs for Validating Prognostic and Predictive Markers in Oncology

Scientific Program

- 41. High-throughput Expression Landscape: What's next for Methods?
- 42. Statistical Issues in Estimating Health Disparities Using Complex Samples
- 43. Statistical Methods for Neuroscience
- 44. Recent Advances in Statistical Methods for Genetic Epidemiology
- 45. Recent Advances in Survival Analysis with High-dimensional Data
- 46. Dissecting Multiple Imputation from a Multi-phase Inference Perspective
- 47. Innovative Clinical Trial Design and Analysis Methods
- 48. Statistical Advances in Evolutionary Dynamics of Infectious Diseases
- 49. Contributed Papers: Bayesian Semi-Parametric and Non-Parametric Methods
- 50. Contributed Papers: Bayesian Variable Selection
- 51. Contributed Papers: Graphical Models
- 52. Contributed Papers: Multivariate Methods
- 53. Oral Posters: Clinical Trials

3:30 pm - 3:45 pm Refreshment Break with Our Exhibitors

3:45 pm - 5:30 pm Tutorial

[4: A New Paradigm for Finding the Subset of Patients who Benefit from a Test Treatment

Scientific Program

54. New Statistical Methods for Imaging Genetics

ENAR 2016 Program Summary

3:45 pm - 5:30 pm	Scientific Program (continued)
55.	Recent Advances in Adaptive Model-Based Design of Clinical Trials
56.	Statistical Methods for Accelerometry Data: Physical Activity and Health Outcomes
57.	Statistical Methods in HIV/AIDS
58.	Advances and Challenges in Biomarker Studies
59.	Functional Regression Methods and Personalized Medicine
60.	Bayesian Methods for Large-Scale non-Gaussian Data
61.	Contributed Papers: Cancer Applications
62 .	Contributed Papers: Heterogeneous Treatment Effects
63.	Contributed Papers: High Dimensional Data Applications
64 .	Contributed Papers: Machine Learning
65.	Contributed Papers: Next Generation Sequencing
66.	Oral Posters: Genomics
5:30 pm - 6:30 pm	CENS Student Mixer
6:30 pm - 7:30 pm	President's Reception (by Invitation Only)
Tuesday	March 8
7:30 am - 5:00 pm	Conference Registration
7:30 am - 5:00 pm	Speaker Ready Room
8:30 am - 5:30 pm	Exhibits Open
9:30 am - 3:30 pm	Placement Service
8:30 am - 10:15 am	Tutorial
T5:	Introduction to High Throughput DNA Sequence Data Analysis Using R/Bioconductor
	Scientific Program
67.	Scientific Program New Statistical Developments for Emerging Challenges With Complex Data Structures in Observational Studies
67. 68.	Scientific Program New Statistical Developments for Emerging Challenges With Complex Data Structures in Observational Studies Statistical Innovations of Massive Genomic Data Analysis
67. 68. 69.	Scientific Program New Statistical Developments for Emerging Challenges With Complex Data Structures in Observational Studies Statistical Innovations of Massive Genomic Data Analysis Policy Implications of Scientific Reproducibility - A Panel Discussion
67. 68. 69. 70.	Scientific Program New Statistical Developments for Emerging Challenges With Complex Data Structures in Observational Studies Statistical Innovations of Massive Genomic Data Analysis Policy Implications of Scientific Reproducibility - A Panel Discussion Multivariate Models for Spatially Correlated Data
67. 68. 69. 70. 71.	Scientific Program New Statistical Developments for Emerging Challenges With Complex Data Structures in Observational Studies Statistical Innovations of Massive Genomic Data Analysis Policy Implications of Scientific Reproducibility - A Panel Discussion Multivariate Models for Spatially Correlated Data Methods for Comparative Effectiveness Research using Electronic Health Records
67. 68. 69. 70. 71. 72.	Scientific Program New Statistical Developments for Emerging Challenges With Complex Data Structures in Observational Studies Statistical Innovations of Massive Genomic Data Analysis Policy Implications of Scientific Reproducibility - A Panel Discussion Multivariate Models for Spatially Correlated Data Methods for Comparative Effectiveness Research using Electronic Health Records Missing Data Issues in Meta-analysis with Individual Participant Data
67. 68. 69. 70. 71. 72. 73.	Scientific ProgramNew Statistical Developments for Emerging Challenges With Complex Data Structures in Observational StudiesStatistical Innovations of Massive Genomic Data AnalysisPolicy Implications of Scientific Reproducibility - A Panel DiscussionMultivariate Models for Spatially Correlated DataMethods for Comparative Effectiveness Research using Electronic Health RecordsMissing Data Issues in Meta-analysis with Individual Participant DataModeling High Dimensional Space-Time Data With Applications To Neuroimaging

ENAR 2016 | Spring Meeting | March 6-9 | Preliminary Program

8:30 am - 10:15 am	Scientific Program (continued)
75.	Contributed Papers: Epidemiologic Methods
76 .	Contributed Papers: GWAS: Applications
77.	Contributed Papers: Missing Data
78 .	Contributed Papers: Semi-Parametric and Non-Parametric Survival Analysis
79 .	Contributed Papers: Study Design
:15 am - 10:30 am	Refreshment Break with Our Exhibitors
:30 am - 12:15 pm	Presidential Invited Address
80.	Biostatistics, Biomedical Informatics, and Health Data Science: Research and Training
2:30 pm - 4:30 pm	Regional Committee Luncheon Meeting (by Invitation Only)
45 pm - 3:30 pm	Tutorial
T6:	Adaptive designs for Confirmatory Clinical Trials
	Scientific Program
81.	New Developments for Individualized Medical Decision Making in Real World Settings
82.	Emerging Issues in Clinical Trials with Time-to-Event Data in the Presence of Competing Risks
83.	New Development of Statistical Methods for Family-Based Sequencing Studies
84.	New Developments of Quantile Regression for Complex Data Analysis: Theories and Applications
85 .	Current Developments and Issues for Meta-Analysis
86 .	Survival Prediction Models for Medical Decision Making
87.	Statistical Machine Learning for Big-Bio-Data
88.	Contributed Papers: Causal Inference
89 .	Contributed Papers: Functional Data Analysis
90.	Contributed Papers: High Dimensional Variable Selection
91.	Contributed Papers: Nonparametric Methods
92.	Contributed Papers: Spatiotemporal Modeling
93.	Contributed Papers: Survival Analysis: Multivariate and Hierarchical
:30 pm - 3:45 pm	Refreshment Break with Our Exhibitors
45 pm - 5:30 pm	Tutorial
17:	Quantile Regression for Survival Analysis
	Scientific Program
94.	Some New Developments in the Modern Longitudinal Data Analysis

Scientific Program (continued)
Statistical Considerations in Personalized Medicine: Concept and Methodology
Innovative Techniques Towards Solving the Complexities of Biomarker Discovery
New Developments of Bayesian Methods for Causal Inference
Integrative Analysis of Multi-Omic Data for Understanding Complex Human Diseases
Analysis of Next-Generation Sequencing Data: Increasing Accuracy and Novel Applications
Networks for High Dimensional Time Series
Contributed Papers: Environmental and Ecological Applications
Contributed Papers: Genomics
Contributed Papers: Meta-Analysis
Contributed Papers: Semi-Parametric and Non-Parametric Methods
Contributed Papers: Statistical Genetics: Heterogeneity and Hierarchy
Contributed Papers: Variable Selection
ENAR Business Meeting – Open to all ENAR Members
Tuesday Night Event – Dinner at the Iron Cactus and a show at Esther's Follies
March 9
Speaker Ready Room
Planning Committee (by Invitation Only)
Conference Registration
Conference Registration Exhibits Open
Conference Registration Exhibits Open Scientific Program
Conference Registration Exhibits Open Scientific Program Statistical and Computational Challenges in Omics Data Integration
Conference Registration Exhibits Open Scientific Program Statistical and Computational Challenges in Omics Data Integration Statistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled Trials
Conference RegistrationExhibits OpenScientific ProgramStatistical and Computational Challenges in Omics Data IntegrationStatistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled TrialsSentinel Statistical Methods Working Groups, Challenges with Using Claims Data for Public Health
Conference RegistrationExhibits OpenScientific ProgramStatistical and Computational Challenges in Omics Data IntegrationStatistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled TrialsSentinel Statistical Methods Working Groups, Challenges with Using Claims Data for Public HealthStatistical Modeling of Data on Health Policy and Cost
Conference RegistrationExhibits OpenScientific ProgramStatistical and Computational Challenges in Omics Data IntegrationStatistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled TrialsSentinel Statistical Methods Working Groups, Challenges with Using Claims Data for Public HealthStatistical Modeling of Data on Health Policy and CostWeight Modification in Sample Surveys
Conference RegistrationExhibits OpenScientific ProgramStatistical and Computational Challenges in Omics Data IntegrationStatistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled TrialsSentinel Statistical Methods Working Groups, Challenges with Using Claims Data for Public HealthStatistical Modeling of Data on Health Policy and CostWeight Modification in Sample SurveysGeneralizing Clinical Data Across Studies/Populations
Conference RegistrationExhibits OpenScientific ProgramStatistical and Computational Challenges in Omics Data IntegrationStatistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled TrialsSentinel Statistical Methods Working Groups, Challenges with Using Claims Data for Public HealthStatistical Modeling of Data on Health Policy and CostWeight Modification in Sample SurveysGeneralizing Clinical Data Across Studies/PopulationsNovel Statistical Methods for Sequencing Data – From Quality Control to False Positives
Conference RegistrationExhibits OpenScientific ProgramStatistical and Computational Challenges in Omics Data IntegrationStatistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled TrialsSentinel Statistical Methods Working Groups, Challenges with Using Claims Data for Public HealthStatistical Modeling of Data on Health Policy and CostWeight Modification in Sample SurveysGeneralizing Clinical Data Across Studies/PopulationsNovel Statistical Methods for Sequencing Data – From Quality Control to False PositivesContributed Papers: Bayesian Causal Inference

8:30 am - 10:15 am	Scientific Program (continued)
116.	Contributed Papers: Competing Risks
117.	Contributed Papers: GWAS: Testing
118.	Contributed Papers: Measurement Error
119.	Contributed Papers: Statistical Genetics
10:15 am - 10:30 am	Refreshment Break with Our Exhibitors
10:30 am - 12:15 pm	Scientific Program
120.	Inference for Brain Networks
121.	Recent Development in Joint Modeling for Longitudinal Data
122.	Model Validation: Its Concept, Statistical Integrity, Regulatory Landscape, and Industry Application
123.	Missing Data in Longitudinal Clinical Trials: Choice of Primary Estimand and its Relationship to the Statistical Analysis Methods
124.	Bayesian Analysis of Complex Survey Data
125.	Causal Inference in Social Networks
126.	Optimal Design for Nonlinear Models
127.	Contributed Papers: Bayesian Methods
128.	Contributed Papers: Causal Inference in Epidemiology and Health Policy
129.	Contributed Papers: Count and Categorical Data Analysis
130.	Contributed Papers: Joint Models for Longitudinal and Survival Data
131.	Contributed Papers: Personalized Medicine

132. Contributed Papers: Survival Analysis

Sunday	March 6
8:00 am - 11:00 pm	Poster Presentations
1.	POSTERS: Latent Variables and Mixture Models Sponsor: ENAR
1a.	INVITED POSTER: The LZIP: A Bayesian Latent Factor Model for Correlated Zero-Inflated Counts Brian Neelon* and Dongiun Chung. Medical University of South Carolina
1b.	Understanding Gaussian Process Fits Using an Approximate Form of the Restricted Likelihood
	Maitreyee Bose* and James S. Hodges, University of Minnesota Sudipto Banerjee, University of California, Los Angeles
1c.	A Joint Distribution for a Time-To-Event Outcome and Recurrent Events
_	Luojun Wang* and Vernon M Chinchilli, Penn State University
1d.	Analysis of PHIS Data for a Zero-Truncated, 1&2 Inflated, and Multi-Level Count Variable
	Ji Young Kim* and Benjamin L. Laskin, The Children's Hospital of Philadelphia Tamar Y. Springel, University Hospital Susan L. Furth, The Children's Hospital of Philadelphia and University of Pennsylvania Justine Shults, University of Pennsylvania
1e.	A Latent Variable Approach to Elicit Continuous Toxicity Scores and Severity Weights for Multiple Toxicities in Dose-Finding Oncology Trials
_	Nathaniel S. O'Connell* and Elizabeth Garrett-Mayer, Medical University of South Carolina
1f.	Multilevel Binary Principal Component Analysis
_	Yuting Xu*, Chen Yue, Vadim Zipunnikov, Martin A. Lindquist and Brian S. Caffo, Johns Hopkins Bloomberg School of Public Health
1g.	A Score Test for Detecting Publication Bias in Multivariate Random-Effects Meta-Analysis
	Chuan Hong*, University of Texas Health Science Center, Houston Haitao Chu, University of Minnesota Yong Chen, University of Pennsylvania Perelman School of Medicine
1h.	Measuring Concurrency Using a Joint Multistate and Point Process Model for Retro- spective Sexual History Data
	Hilary J. Aralis*, Pamina M. Gorbach and Ron Brookmeyer, University of California, Los Angeles
1i. [–]	Evaluating Quality of Web Panel Survey Data via Clustering and Latent Classes
	Elizabeth Handorf*, Fox Chase Cancer Center, Temple University Susan Darlow, National Comprehensive Cancer Network
-	Michael Slifker and Carolyn Heckman, Fox Chase Cancer Center, Temple University Lee Ritterband, University of Virginia
1j.	Joint Modeling of Longitudinal, Recurrent Events and Failure Time Data for Survivor's Population
	Qing Cai* and Mei-Cheng Wang, Johns Hopkins University Gary Chan, University of Washington
1k.	Model Diagnostics and Predictive Power Assessment of a Type of Joint Dynamic Models of Recurrent Competing Risks and a Terminal Event
	Piaomu Liu*, University of South Carolina, Columbia

ENAR 2016 Spring Meeting March 6-9 Preliminary Program

Z
AR
20
16
Scientific Program
Sunday
March 6

2.	POSTERS: Imaging and Spatiotemporal Applications Sponsor: ENAR
2a.	INVITED POSTER: Big Data and Neuroimaging: Large-Scale Models for Brain Networks
	Xi Luo*, Brown University
2b.	Scalar on Image Regression with Application to Multiple Sclerosis MRI Lesion Data
	Cui Guo* and Timothy D. Johnson, University of Michigan
2c.	Statistical Estimation of White Matter Microstructure from Conventional MRI
	 Leah H. Suttner*, University of Pennsylvania Amanda Mejia, Johns Hopkins School of Public Health Blake Dewey and Pascal Sati, National Institute of Neurological Disease and Stroke, National Institutes of Health Daniel S. Reich, National Institute of Neurological Disease Disease and Stroke, National Institutes of Health and Johns Hopkins Bloomberg School of Public Health Russell T. Shinohara, University of Pennsylvania
2d.	Spatial Statistical Analysis of Suicidal Behavior in Harris County
	Aron M. Trevino*, University of Texas Health Science Center, San Antonio Dejian Lai, University of Texas Health Science Center, Houston
2e.	Penalized Variable Selection for Spatial Binary and Count Data
	Abdhi Amitabha Sarkar*, Michigan State University Chae Young Lim, Seoul National University Tapabrata Maiti, Michigan State University
2f.	Relating Multi-Sequence Longitudinal Intensity Profiles and Clinical Covariates in Incident Multiple Sclerosis Lesions
	Elizabeth M. Sweeney*, Johns Hopkins Bloomberg School of Public Health Russell T. Shinohara, University of Pennsylvania Blake E. Dewey and Matthew K. Schindler, National Institute of Neurological Disease and Stroke, National Institutes of Health John Muschelli, Johns Hopkins Bloomberg School of Public Health Daniel S. Reich, National Institute of Neurological Disease and Stroke, National Institutes of Health Ciprian M. Crainiceanu, Johns Hopkins Bloomberg School of Public Health
2g.	A Bayesian Zero-Inflated Multivariate Poisson Model for Identifying Functional Co- Activation Patterns
	Caprichia Jeffers*, Emory University Jian Kang , University of Michigan
2h.	Spatial Approach to Age-Period-Cohort Models
	Pavel Chernyavskiy*, Mark P. Little and Philip S. Rosenberg, National Cancer Institute, National Institutes of Health
2i .	Modeling Nonstationarity in Space and Time
	Lyndsay Shand* and Bo Li, University of Illinois, Urbana-Champaign
2 j.	Statistical Analysis of Trajectories on Riemannian Manifolds
	Jingvong Su*. Texas Tech Universitv

За.	INVITED POSTER: C-Learning: A New Classification Framework to Estimate Optimal Dynamic Treatment Regimes
_	Baqun Zhang, Renmin University Min Zhang*, University of Michigan
3b.	An Extension of the Closure Principle for the Identification of Individual Efficacious Endpoints when Using Composite Endpoints in Clinical Trials
_	Jaclyn A. McTague*, Dror Rom and Chen Chen, Prosoft Clinical
3c.	A Likelihood Design for Single Arm Phase II Group Sequential Clinical Trials with Time- To-Event Endpoints
_	Wei Wei* and Elizabeth Garrett-Mayer, Medical University of South Carolina
3d.	Comparing Four Dose Escalation Designs in Phase I Oncology Trials
_	Zhao Yang* , University of Southern California and Biometrics, Medivation, Inc. Rui Li and Suman Bhattacharya , Biometrics, Medivation, Inc.
3e.	Non-inferiority Studies with Multiple Reference Treatments and Heterogeneous Variances
	Li-Ching Huang*, Vanderbilt University
_	Min-Jye Wen, National Cheng-Kung University, Taiwan Yu Shyr, Vanderbilt University
3f.	Bayesian Clinical Trial Design for a Validation Study of Molecular Alteration Identification
_	Xiaoxiao Lu* and Sijin Wen, West Virginia University
3g.	AUC Regression for Multiple Comparisons to a Control with Application in Determining the Minimum Effective Dose
_	Johanna S. Van Zyl* and Jack D. Tubbs, Baylor University
3h.	Bayesian Approach to Sample Size Determination for Multilevel Logistic Regression Models with Misclassified Outcomes
_	Tyler W. Nelson* and James D. Nelson, Baylor University
3i.	An Evaluation of Constrained Randomization for the Design and Analysis of Group- Randomized Trials
	Fan Li* and Yuliya Lokhnygina, Duke University David Murray, National Institutes of Health, Office of Disease Prevention Patrick Heagerty, University of Washington Elizabeth DeLong, Duke University
3j.	Optimal Group Sequential Design
	Qi An*, University of Florida
3k	An Informative Prior Approach to a Bivariate Zero-Inflated Poisson Regression Model
	Madeline L. Drevets* and John W. Seaman, Baylor University
31.	Sensitivity in Prior Elicitation
	Somer E. Blair*, David Kahle and John W. Seaman, Jr., Baylor University
3m.	Combining Non-Randomized and Randomized Data in Clinical Trials Using Commensurate Priors
	Hong Zhao*, University of Minnesota Brian P. Hobbs, University of Texas MD Anderson Cancer Center Haijun Ma and Qi Jiang, Amgen Inc. Bradley P. Carlin, University of Minnesota

POSTERS: Clinical Trials, Adaptive Designs and Applications

3.

Sponsor: ENAR

Scientific Program Sunda
igram Sunda
DU
ly March 6

4. POSTERS: Survivial Analysis Sponsor: ENAR

4a. INVITED POSTER: Quantile Residual Life Regression with Longitudinal Biomarker Measurements for Dynamic Prediction

Ruosha Li*, University of Texas Health Science Center, Houston Xuelin Huang and Jorge Cortes, University of Texas MD Anderson Cancer Center

4b. Evaluating Use of a Cox Regression Model in Landmark Analysis to Approximate an Illness-Death Model

Krithika Suresh*, Jeremy M.G. Taylor and Alex Tsodikov, University of Michigan

4c. Estimating Environmental Modification on Coefficients of Cox Proportional Hazards Model in the Study of Sexual Maturation

Huazhen Lin, Southwestern University of Finance and Economics Peter Song and Ling Zhou*, University of Michigan

4d. Inference of Transition Probabilities in Multi-State Models Using Adaptive Inverse Probability Censoring Weighting Technique

Ying Zhang* and Meijie Zhang, Medical College of Wisconsin

4e. Measuring the Effects of a Time-Dependent Treatment on Correlated Recurrent and Terminal Events Using Frailty-Based Prognostic Models

Abigail R. Smith* and Douglas E. Schaubel, University of Michigan

4f. Semiparametric Bayesian Estimation of Quantile Function for Survival Data with Cured Fraction

Cherry C.H. Gupta*, Florida State University Juliana Cobre, Universidade de São Paulo Andriano Polpo, Universidade Federal de São Carlos Debjayoti Sinha, Florida State University

- 4g. Dynamic Prognosis Tool of Acute Graft-Versus-Host Disease Based on Biomarkers Yumeng Li* and Thomas Braun, University of Michigan
- 4h. Proportional Hazards Model with a Change Point for Clustered Event Data

Yu Deng* and Donglin Zeng, University of North Carolina, Chapel Hill Jinying Zhao, Tulane University Jianwen Cai, University of North Carolina, Chapel Hill

- 4i. A Class of Two-Sample Tests for Quantile Residual Life Time Yimeng Liu* and Abdus S. Wahed, University of Pittsburgh
- 4j. Semiparametric Regression Analysis of Interval-Censored Competing Risks Data Lu Mao*, Danyu Lin and Donglin Zeng, University of North Carolina, Chapel Hill
- 4k. Semiparametric Regression Model for Recurrent Bacterial Infections after Hematopoietic Stem Cell Transplantation

Chi Hyun Lee*, University of Texas MD Anderson Cancer Center Xianghua Luo, University of Minnesota Chiung-Yu Huang, Johns Hopkins University Todd E. DeFor, Claudio G. Brunstein and Daniel J. Weisdorf, University of Minnesota

- 41. Estimation and Modeling of Sexual Partnership Data Yared Gurmu*, Harvard University
- 4m. Estimation and Inference for the Incremental Cost-Effectiveness Ratio for Censored Survival Data

Donna L. Spiegelman*, Polyna Khudyakov and Molin Wang, Harvard School of Public Health

4n.	A Threshold-Free Prospective Prediction Accuracy Measure for Censored Time to Event Data Yan Yuan*, University of Alberta Bingying Li and Qian Zhou, Simon Fraser University
5.	POSTERS: Causal Interference Sponsor: ENAR
5a.	INVITED POSTER: Estimating Causal Effects of Power Plant Regulations: Bipartite Causal Inference with Interference
-	Corwin M. Zigler* and Chanmin Kim, Harvard School of Public Health
5b.	On Justifying the Use of Summary Comorbidity Measures for Health Services Research
	Elizabeth A. Gilbert*, Temple University Robert T. Krafty, Temple University and University of Pittsburgh Richard J. Bleicher and Brian L. Egleston, Fox Chase Cancer Center
-	Nonparametric Estimation of Complier Effects with Continuous Instrumental Variables
_	Edward H. Kennedy* and Dylan S. Small, University of Pennsylvania
5d.	Propensity Score Matching for Clustered Data
	Mi-Ok Kim, Cincinnati Children's Hospital Medical Center Bo Lu, The Ohio State University Yu Wang*, Chunyan Liu, Edward Nehus and Maurizio Macaluso, Cincinnati Children's Hospital Medical Center
5e.	Machine Learning for Characterization of Developing Neuronal Cultures
-	Diana R. Hall*, Columbia University Ellese Cotterill, Cambridge University Kathleen Wallace and William Mundy, United States Environmental Protection Agency Stephen J. Eglen, Cambridge University Timothy J. Shafer, United States Environmental Protection Agency
5f.	GLiDeR: Doubly Robust Estimation of Causal Treatment Effects with the Group Lasso
-	Brandon Lee D. Koch*, David M. Vock and Julian Wolfson, University of Minnesota
5g.	The Validation Average Predictive Effect (VAPE) for Evaluating Risk Prediction Tools
	Andreas N. Strobl*, Technical University Munich, Germany Donna P. Ankerst, Technical University Munich, Germany and University of Texas Health Science Center, San Antonio
6.	POSTERS: Statistical Genetics. GWAS. and 'Omics Data
	Sponsor: ENAR
6a.	INVITED POSTER: Bayesian Functional Graphical Regression: Application to Smoking Cessation Studies
-	Lin Zhang*, University of Minnesota Veera Baladandayuthapani, Francesco Versace and Jeffrey Morris, University of Texas MD Anderson Cancer Center
6b.	INVITED POSTER: TSCAN: Pseudo-Time Reconstruction and Evaluation in Single-Cell RNA-Seq Analysis
-	Zhicheng Ji and Hongkai Ji*, Johns Hopkins Bloomberg School of Public Health
6c.	Efficient Semiparametric Inference Under Two-Phase, Outcome-Dependent Sampling
-	Ran Tao*, Donglin Zeng and Dan-Yu Lin, University of North Carolina, Chapel Hill

NAR 2016
Scientific Program
Sunday March 6
6

6d.	A Statistical Approach to Remove Nuisance Variation in Single Cell RNA-Seq Experiments
-	Jeea Choi*, University of Wisconsin, Madison Ning Leng and Li-Fang Chu, Morgridge Institute for Research Christina Kendziorski, University of Wisconsin, Madison
6e.	Corrmeta: Fast Association Analysis for eQTL and GWAS Data with Related Samples and Correlated Phenotypes
	 Kai Xia*, University of North Carolina, Chapel Hill Andrey A. Shabalin, Virginia Commonwealth University Wonil Chung, Zhaoyu Yin, Martin Styner and Patrick F. Sullivan, University of North Carolina, Chapel Hill Fred A. Wright, North Carolina State University John H. Gilmore, Rebecca C. Santelli and Fei Zou, University of North Carolina, Chapel Hill
6f.	Normalization of Single Cell RNA-Sequencing Data
-	Rhonda Bacher* and Keegan Korthaeur, University of Wisconsin, Madison Ning Leng, Li-Fang Chu, James A. Thomson and Ron M. Stewart, Morgridge Institute for Research Christina Kendziorski, University of Wisconsin, Madison
6g.	A Bayesian Hierarchical Model for RNA-Seq Meta-Analysis and Biomarkers Categorization by Study Heterogeneity
_	Tianzhou Ma* and George C. Tseng, University of Pittsburgh
6h.	A Novel Method for Testing Association with Common Variants in Case-Control Studies Using Next-Generation Sequencing Data
-	Peizhou Liao* and Yijuan Hu, Emory University Glen A. Satten, Centers for Disease Control and Prevention
6i.	A Novel Random Effect Model for GWAS Meta-analysis and its Application to Trans-ethic Meta-analysis
_	Jingchunzi Shi* and Seunggeun Lee, University of Michigan
6j.	Novel Tests for Detection of Gene-Environment Interaction in Family Studies
_	Brandon J. Coombes* and Saonli Basu, University of Minnesota
6k.	Incorporating Biological Information in Sparse Principal Component Analysis with Application to Genomic Data
_	Ziyi Li*, Sandra Safo and Qi Long, Emory University
6 I.	Novel Theory for Mapping and Charting the Genetic Architecture of Gene Expression Profiles on Multiple Tissues
_	Kirk Gosik* and Rongling Wu, Penn State College of Medicine
6m.	Estimating Cell Type Specific Associations from Whole Blood Methylation
	Richard T. Barfield* and Xihong Lin, Harvard University
6n.	Application of Sample Quality Weights in Random Effects Meta-Analysis of Gene Expression Studies: Bayesian and Non-Bayesian Approaches
-	Uma Siangphoe* and Nitai D. Mukhopadhyay, Virginia Commonwealth University
60.	Intermittency and Limit Theorems for Superpositions of Ornstein-Uhlenbeck Type Processes
-	Danijel Grahovac, University of Osijek Nikolai Leonenko, Cardiff University Alla Sikorskii and Irena Tesnjak*, Michigan State University
6p.	Population Genetic Features of Rare Variants in Finland

Rosemary Putler* and Sebastian Zoellner, University of Michigan

6q.	Methods of Inference for Penalized Regression in High-Dimensional Genetic Association Studies
-	Jaron Arbet* and Saonli Basu, University of Minnesota
6r.	A Powerful Approach in Differential Analysis for Time Series Microbial Studies
-	Dan Luo* and Lingling An, University of Arizona
6s.	A Two-Part Mixed Effect Model for Longitudial Microbiome Data Analysis
-	Eric Z. Chen* and Hongzhe Li, University of Pennsylvania
6t.	A Two-Step Integrated Approach to Detect Differentially Expressed Genes in RNA-Seq Data
	Naim A. Mahi*, University of Cincinnati Munni Begum, Ball State University
7.	POSTERS: Methodology and Applications in Epidemiology, Environment, and Ecology Sponsor: ENAR
7a.	INVITED POSTER: False Discovery Rate Smoothing
	James G. Scott* and Wesley Tansey, University of Texas, Austin
7b.	Asymptotic Behaviors of the Mantel-Haenszel Estimators and Their Robust Variance Estimators When the Common Effect Assumptions are Violated
_	Hisashi Noma*, The Institute of Statistical Mathematics Kengo Nagashima, Chiba University
7c.	StatStart, Harvard University Biostatistics Department
_	Octavious Talbot*, Sam Tracy and Alex Ocampo, Harvard University
7d.	A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
_	Wenqi Wu*, James Stamey and David Kahle, Baylor University
7e.	Improving the Dynamics of Data-Driven Discovery at Academic Health Centers
-	Jonathan Gelfond and Martin W. Goros*, University of Texas Health Science Center, San Antonio
7f.	Simultaneous Prediction of Anticancer Activity and Toxicity in Aliphatic Nitrosoureas Using Quantitative Structure Activity Relationship (QSAR) Methods
_	Soyi Sarkar*, Isabel Alland and Solomon H. Jacobson, Newark Academy
7g.	Incorporating Candidates with Multiple Associated Incompatible Donors in Kidney Paired-Donation
-	Mathieu Bray*, Wen Wang, Peter X-K. Song and John D. Kalbfleisch, University of Michigan
7h.	Estimating Neighborhood Socioeconomic Status Indexes in Cancer Risk Models
-	David C. Wheeler* and Jenna Czarnota, Virginia Commonwealth University Mary H. Ward, National Cancer Institute, National Institutes of Health
7i.	Comparison of Linear, Quadratic, and Linear Spline Regression Models to Examine the Relationship Between Birth-Weight and Systolic Blood Pressure in Children
-	Amna Umer, Candice Hamilton, Cris Britton, Lee Pyles, William Neal, Collin John and Christa Lilly*, West Virginia University

7j.	An Activity Index for Raw Accelerometry Data and its Comparison with Activity Counts
	Jiawei Bai*, Johns Hopkins University
	Chongzhi Di, Fred Hutchinson Cancer Research Center
	Luo Xiao, North Carolina State University
	Andrea 7 LaCroix University of California, San Diego
	Ciprian M. Crainiceanu, Johns Hopkins University
	David M. Buchner, University of Illinois, Urbana-Champaign
7k.	Secondary Response Variable Regression Analysis in a Case-Cohort Study
	Yinghao Pan*, Haibo Zhou and Jianwen Cai, University of North Carolina, Chapel Hill Sangmi Kim, Georgia Regents University
7 I.	The ALERT Algorithm for Detection of Local Onsets of RSV and Influenza
	Alexandria C. Brown* and Nicholas G. Reich, University of Massachusetts, Amherst
8.	POSTERS: Variable Selection and Methods for High Dimensional Data
	Sponsor: ENAR
8a.	INVITED POSTER:
	Flexible Modeling and Feature Importance in High Dimensional Problems
	Noah Simon*, University of Washington
8b.	Single-Index Varying Coefficient Model for Functional Responses
	Xinchao Luo*, East China Normal University and University of North Carolina, Chapel Hill
	Lixing Zhu, Hong Kong Baptist University
	Hongtu Zhu, University of North Carolina, Chapel Hill
80.	Assessment of DPOAE Test-Retest Difference Curves via Hierarchical Gaussian Processes
	Junshu Bao" and Timothy E. Hanson, University of South Carolina
80.	Variable Selection in Function-Un-Scalar Regression
80	
00.	Via Zena* Hao Helen Zhang and Ning Hao. University of Arizona
04	
ŏI.	Inter Edge Structure of Mixed Graphic Model
	Suwa Xu^, University of Florida
8g.	Bi-Level Variable Selection in an Ordered Probit Regression Model via Maximum Likelihood with Composite Bridge Penalty
	Feiran Jiao* and Kung-sik Chan, University of Iowa
8h.	FSEM: Functional Structural Equation Model for Twin Functional Data
	Shikai Luo* and Rui Song, North Carolina State University Martin Styner, John Gilmore and Hongtu Zhu, University of North Carolina, Chapel Hill
8i.	SIFORM: Shared Informative Factor Models for Integration of Multi-Platform Bioinformatic Data
	Xuebei An*, Jianhua Hu and Kim-Anh Do, University of Texas MD Anderson Cancer Center
8j.	Hypothesis Testing for Time-Varying Covariate Effect in Complex Correlated Functional Data
	Saebitna Oh* and Ana-Maria Staicu, North Carolina State University
8k.	ThrEEboost: Thresholded Boosting for Variable Selection and Prediction Via Estimating Equations
	Benjamin T. Brown*, University of Minnesota
	Christopher J. Miller, 3D Communications
	Julian Wolfson, University of Minnesota

Sunday March 6	
ENAR 2016 Scientific Program	

81.	Use of Functional Linear Models to Detect Associations Between Characteristics of Walking and Health Related Outcomes using Accelerometry Data
_	William F. Fadel* and Jaroslaw Harezlak, Indiana University School of Public Health, Indianapolis Jacek K. Urbanek, Johns Hopkins Bloomberg School of Public Health Nancy W. Glynn, University of Pittsburgh
8m.	Variable Selection and Covariance Estimation for High Dimensional Data
	Runmin Shi*, University of Florida
8n.	Scalable Bayesian Variable Selection Using Nonlocal Prior Densities in Ultrahigh- Dimensional Settings
_	Minsuk Shin*, Anirban Bhattacharya and Valen E. Johnson, Texas A&M University
80.	On Gaussian Comparison Inequality and Its Application to Spectral Analysis of Large Random Matrices
_	Sheng Xu*, Johns Hopkins University Wenxin Zhou, University of Melbourne Fang Han, Johns Hopkins University
8p.	A Unified Theory of Confidence Regions and Testing for High Dimensional Estimating Equations
	Matey Neykov* and Yang Ning, Princeton University Jun S. Liu, Harvard University Han Liu, Princeton University
8q.	On the Estimation of Population Eigenvalues and the Asymptotic Properties of PCA in High-Dimensional Data
	Rounak Dey* and Seunggeun Lee, University of Michigan
9.	POSTERS: Bayesian Methods and Computational Algorithms Sponsor: ENAR
9a.	INVITED POSTER: Bayesian Predictive Modeling for Personalized Treatment Selection
_	Junsheng Ma, Francesco Stingo and Brian Hobbs*, University of Texas MD Anderson Cancer Center
9b.	Logistic Regression Model Estimation and Prediction Incorporating Coefficients Information
	Wenting Cheng*, Jeremy M.G. Taylor and Bhramar Mukherjee, University of Michigan
9c.	A Low Information Prior Specification for a Dirichlet Process Mixture of Gaussian Distributions
	Michael Martens* and Purushottam Laud, Medical College of Wisconsin
9d.	Some Examples of Bayesian Network Meta-Analysis of Longitudinal Data
_	Jonathon J. Vallejo*, Baylor University
9e.	Frequentist and Bayesian Approaches to the Evaluation of Binary Classifiers
_	Fridtjof Thomas*, University of Tennessee Health Science Center
9f.	Spatio-Temporal Bayesian Quantile Regression for Analyzing Weather Data of Us
_	Priyam Das* and Subhashis Ghoshal, North Carolina State University
9g.	Simulation-Based Estimation of Mean and Standard Deviation for Meta-Analysis Us- ing Approximate Bayesian Computation (ABC) Coupled with Model Averaging Method
_	Deukwoo Kwon and Isildinha M. Reis*, University of Miami
9h	A Low Information Prior for Dirichlet Process Mixture of Weibull Distributions
_	Yushu Shi* and Purushottam Laud, Medical College of Wisconsin

ENAR 2016	
Scientific Program	
Sunday March 6	

9i.	MCMC Methods for Bayesian Model Selection for Log-Binomial Regression
-	Wei Zhou* and Siva Sivaganesan, University of Cincinnati
9j.	A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests
_	Qinshu Lian* and Haitao Chu, University of Minnesota
9k.	Informative Prior Structures for the Covariance in Bivariate Measurement Error Models
_	Courtney N. Weber*, Baylor University Melinda M. Holt, Sam Houston State University John Seaman, Baylor University
91.	Prior Elicitation via a Rorschach-Style Graphical Procedure
_	Christopher Casement* and David Kahle, Baylor University
9m.	Bregman Divergence to Generalize Bayesian Influence Measures for Data Analysis
_	Matthew M. Weber* and Debajyoti Sinha, Florida State University Dipak K. Dey, University of Connecticut
9n.	A Bayesian Screening Approach for Hepatocellular Carcinoma using Two Longitudinal Biomarkers
	Nabihah Tayob*, Francesco Stingo, Kim-Anh Do and Ziding Feng, University of Texas MD Anderson Cancer Center
10.	POSTERS: Semi-and Non-Parametric Methods Sponsor: ENAR
10a.	On the Asymptotic Distribution of the Wilcoxon Signed Rank Test Statistic
-	Xueyi Chen* and Francisco J. Diaz, University of Kansas Medical Center
10b.	Semiparametric Survival Model with Time-Dependent Cure Process
-	Sophie Yu-Pu Chen* and Alexander Tsodikov, University of Michigan
10c.	Semiparametric Models of Bivariate Times to Event Data with a Semicompeting Risk
	Ran Liao*, Indiana University, Bloomington Sujuan Gao, Indiana University, Indianapolis
10d.	Change-Plane Analysis for Subgroup Detection and Sample Size Calculation
	Ailin Fan*, Rui Song and Wenbin Lu, North Carolina State University
10e.	Approximating Small P-Values in Permutation Tests: Using the Structure of the Permutation Space to Speed up Computation
_	Brian D. Segal*, Hui Jiang and Thomas Braun, University of Michigan
10f.	Weighted Semi-Parametric Regression Models for Doubly Truncated Survival Data
_	Lior Rennert* and Sharon X. Xie, University of Pennsylvania
10g.	Non-Parameric Shrinkage Median Estimation
_	Beidi Qiang* and Edsel Pena, University of South Carolina
10h.	Robust Nonparametric Kernel Regression Estimator
_	Ge Zhao* and Yanyuan Ma, University of South Carolina
10i	A Random Forest of Modified Interaction Trees for Treatment Decision Rules
	Zhen Zeng* , Merck Wei Zheng and Yuefeng Lu , Sanofi
10j.	A Profile Maximum Pseudolikelihood Estimator for the Proportional Cause-Specific Hazards Model Under Outcome Misclassification
-	Giorgos Bakoyannis*, Ying Zhang and Constantin T. Yiannoutsos,

10k.	Likelihood Ratio Testing in Functional Additive Models
	Merve Yasemin Tekbudak*, Marcela Alfaro-Cordoba, Ana-Maria Staicu and Arnab Maity, North Carolina State University
10I.	Nonparametric Change Point Detection Methods for Profile Variability
	Vladimir J. Geneus*, Florida State University
10m.	Covariate Adjusted Spearman's Rank Correlation with Probability-Scale Residuals
	Qi Liu* and Bryan Shepherd, Vanderbilt University Valentine Wanga, Institute for Health Metrics and Evaluation Chun Li, Case Western Reserve University
11.	POSTERS: Censoring, Truncation, and Missingness Sponsor: ENAR
11a. _	Truncation-Based Nearest Neighbors Imputation for High Dimensional Data with Detection Limit Thresholds
_	Jasmit S. Shah*, Guy N. Brock, Shesh N. Rai and Aruni Bhatnagar, University of Louisville
11b.	Multiple Imputation of Missing Covariates for the Cox Proportional Hazards Cure Model
_	Lauren J. Beesley*, University of Michigan Jonathan W. Bartlett, London School of Hygiene & Tropical Medicine Jeremy M. G. Taylor, University of Michigan
11c.	Sequential BART for Imputation of Missing Covariates
	Dandan Xu*, University of Florida Michael J. Daniels, University of Texas, Austin Almut G. Winterstein, University of Florida
11d.	Combining Item Response Theory with Multiple Imputation to Equate Health Assessment Questionnaires
-	Chenyang Gu*, Roee Gutman and Vincent Mor, Brown University
11e.	Hot Deck Multiple Imputation for Handling Accelerometer Missing Data
-	Siying Li* and Amy Herring, University of North Carolina, Chapel Hill
111.	Sampling Methods to Improve the Efficiency of Two-Phase Estimators for a Continu- ous Outcome
-	Paul M. Imbriano* and Trivellore E. Raghunathan, University of Michigan
11g.	Bayesian Nonparametric Feature Selection Over Large-Scale Gene Networks with Missing Values
	Zhuxuan Jin*, Emory University Zhou Lan, North Carolina State University Jian Kang, University of Michigan Tianwei Yu, Emory University
11h.	Binary Exposure and Longitudinal Cognition Outcomes in the Presence of Non-Ingorable Dropout and Death
	Maria Josefsson* and Xavier de Luna, Umea University Michael J. Daniels, University of Texas, Austin Lars Nyberg, Umea University
11i.	A Scalable Approach and R Package to Measure the Impact of Nonignorable Missing Data
	Weihua Gao* and Baodong Xing, University of Illinois, Chicago Donald Hedeker, University of Chicago Robin Mermelstin, University of Illinois, Chicago Hui Xie, University of Illinois, Chicago and Simon Fraser University
11j.	Nonparametric Imputation for Nonignorable Missing Data
	Domonique Watson Hodge* and Qi Long, Emory University

12.	POSTERS: Classification, Testing and Networks Sponsor: ENAR
12a. -	Modeling Overdispersed Nuclear Bud Count Data Using the Generalized Monotone Incremental Forward Stagewise Method
	Rebecca Ruffin Lehman*, Colleen Jackson-Cook and Kellie Archer, Virginia Commonwealth University
12b.	The Optimal Point When Interest is in Only a Portion of the ROC Curve
	Donna K. McClish*, Virginia Commonwealth University
12c.	Automation of Immuno-Oncology Flow Cytometry Assay using Cask-Cyto
	Shubing Wang*, Junshui Ma, David Alexander, George Skibinski, Jinkai Teo and Janice Hsueh Ling Oh, Merck
12d.	A Novel Estimation Technique for A 5-Parameter Bivariate Beta Distribution
-	Lauren G. Perry* and James M. Flegal, University of California, Riverside
12e.	Interval Estimation of Ratio of Two Coefficients of Variation for Lognormal Distributions
-	Jun-Mo Nam, National Cancer Institute, National Institutes of Health Deukwoo Kwon*, University of Miami
12f.	Evaluating R Packages for Comparing Two Correlated C Indices with a Right-Censored Survival Outcome
_	Brian S. Di Pace* and Le Kang, Virginia Commonwealth University
12g.	Comparison of Two Correlated ROC Curves at a Given Specificity Level
_	Leonidas E. Bantis* and Ziding Feng, University of Texas MD Anderson Cancer Center
12h.	Locally Relevant Subgraphs Enumeration in Transplant Patient Networks
-	Wen Wang*, Mathieu Bray, Peter Song and John Kalbfleisch, University of Michigan
12i.	Statistical Methods to Address Outcome Misclassification in Studies of Alzheimer's Disease
_	Le Wang* and Rebecca Hubbard, University of Pennsylvania
12j.	The Inference Tree System for Accountable Analyses
	Brian S. Hernandez*, University of Texas Health Science Center, San Antonio Emmy Burnett, Rice University
12k.	Jonatnan A. Gelfond, University of Texas Health Science Center, San Antonio
	An Approach to Calibrate a Biomarker and Derive the MLE of the Incidence
-	Severin Guy Mahiane*, Avenir Health
121.	A Simple Density-Based Empirical Likelihood Ratio Test for Independence
	Albert Vexler, University of Buffalo, The State University of New York Wan-Min Tsai*, PPD and University of Buffalo, The State University of New York Alan Hutson, University of Buffalo, The State University of New York
13.	POSTERS: Repeated Measures Sponsor: ENAR
13a.	Careful Consideration of Time-Varying Exposures with Possible Repeated Events
106	Anurew J. Annouse", University of Philsburgh
13b.	Shaun D. Bender* and Peter P. Reese, University of Pennsylvania Victoria Gamerman, Boehringer Ingelheim Pharmaceuticals Inc.

33

13c.	A Flexible Approach for Analyzing Longitudinal Clustered Data: A Generalization of the Difference-In-Difference (DD) Approach
	Jason A. Lee*, W. Bruce Vogel, Martin P. Wegman and Keith E. Muller, University of Florida
	Methods for Evaluating Respondent Attrition in Online Survey Data
_	Camille J. Hochheimer* , Roy T. Sabo , Alexander Krist , Steven H. Woolf and Teresa Day , Virginia Commonwealth University
13e.	Predicting Sleep Stages via Gaussian Processes
_	Xu Gao*, Hernando Ombao and Babak Shahbaba, University of California, Irvine
13f.	An Extension of Autoregressive and Cross-Lagged Models to Modeling Correlated Bivariate Non-Commensurate Outcomes
	Fei He*, Indiana University Armando Teixeira-Pinto, University of Sydney
_	Jaroslaw Harezlak, Indiana University School of Public Health
13g	Observations or Events Per Variable in Longitudinal Models
_	Abigail R. Smith and Jarcy Zee*, Arbor Research Collaborative for Health
13h.	Maximum Likelihood Based Analysis of Equally Spaced Longitudinal Count Data with Specified Marginal Means, First-Order Antedependence, and Linear Conditional Expectations
	Victoria Gamerman*, Boehringer-Ingelheim Pharmacueticals, Inc. & University of Pennsylvania Matthew Guerra, U.S. Food and Drug Administration Justine Shults, University of Pennsylvania
- 13i.	Parsimonious Regression Models for Associations of Accelerometry-Derived Features of Walking and Performance Measures in the Elderly Population
	Jacek K. Urbanek* and Vadim Zipunnikov, Johns Hopkins Bloomberg School of Public Health Tamara B. Harris, National Institute on Aging, National Institutes of Health Nancy W. Glynn, University of Pittsburgh Ciprian Crainiceanu, Johns Hopkins Bloomberg School of Public Health Jaroslaw Harezlak, Indiana University School of Public Health
- 13j.	Empirical Bayes Shrinkage Estimators for Summary Statistics of Non-Stationary Time Series
	Amanda F. Mejia*, Ciprian Crainiceanu and Martin Lindquist, Johns Hopkins Bloomberg School of Public Health
14.	POSTERS: Special Topic
14-	
14a.	INVITED POSTER: The International Biometric Society
	Elizabeth Thompson*, University of Washington, IBS President
Monday	March 7
8:30 am - 10:15 am	Oral Presentations
15.	Statistical Advances in Functional and Single Cell Genomics
	Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Organizer & Chair: Hongkai Ji, Johns Hopkins University
8:30	Towards a Global Gene Regulatory Network
	Wing Hung Wong* and Yong Wang, Stanford University

8:55	A Dirichlet Process Mixture Model Approach to Identify Genes Showing Differential Dynamics in Single-Cell RNA-Seq Data Keegan Korthauer, Dana-Farber Cancer Institute Rhonda Bacher and Jeea Choi, University of Wisconsin, Madison Li-Fang Chu, James A. Thomson and Ron Stewart, Morgridge Institute for Research Christina Kendziorski [*] , University of Wisconsin, Madison
9:20	Statistical Modeling of Dropout Events in Single-Cell RNA Sequencing Data Mingyao Li*, Cheng Jia, Yuchao Jiang and Nancy Zhang, University of Pennsylvania
9:45	A Spectral Approach for the Integration of Functional Genomics Annotations for both Coding and Noncoding Sequence Variants Iuliana Ionita-Laza*, Kenneth McCallum and Bin Xu, Columbia University; Joseph Buxbaum, Mount Sinai School of Medicine
10.10	
16.	STATISTICAL CONSIDERATIONS and Challenges In Evaluating Vaccine Efficacy Sponsors: ENAR, ASA Biometrics Section Organizer: Chiung-Yu Huang, Johns Hopkins University Chair: Ying Qing Chen, Fred Hutchinson Cancer Research Center
8:30	Evaluating Ebola Vaccine Efficacy under Outbreak Conditions using a Ring Vaccination Trial Design Natalie E. Dean* and Ira M. Longini, University of Florida M. Elizabeth Halloran, Fred Hutchinson Cancer Research Center and University of Washington
9:00	Inference about Herd Immunity in Observational Vaccine Studies
	Michael G. Hudgens*, University of North Carolina, Chapel Hill
9:30	Sieve Analysis Using the Number of Infecting Pathogens
	Dean A. Follmann* , National Institute of Allergy and Infectious Diseases, National Institutes of Health Ching-Yu Huang , Johns Hopkins University
10:00	Discussant:
	Amelia Dale Horne, U.S. Food and Drug Administration
17.	Recent Advances in Subgroup Identification for Clinical Trial Regulatory Science Sponsors: ENAR Organizer: Bradley P. Carlin, University of Minnesota Chair: Peter Muller, University of Texas at Austin
8:30	A Bayesian Credible Subgroups Approach to Identifying Patient Subgroups with Positive Treatment Effects Bradley P. Carlin* and Patrick M. Schnell, University of Minnesota Qi Tang and Walter W. Offen, AbbVie, Inc.
9:00	Detection of Predictive Biomarkers Accounting for Sample Heterogeneity Jianhua Hu*, University of Texas MD Anderson Cancer Center Weining Shen, University of California, Irvine Jing Ning and Zideng Feng, University of Texas MD Anderson Cancer Center
9:30	Evaluating the Impact of Treating the Optimal Subgroup
-	Alexander R. Luedtke and Mark J. van der Laan*, University of California, Berkeley
10:00	Discussant:
	בוסע בעדעוושט, ט.ט. דטטע מוע בועט אמווווווטנומנוטוו

35

18.	What I Know Now: Advice on Maximizing Graduate School and Early Career Experience Sponsors: ENAR Organizer: Michael McIsaac, Queen's University Chair: Mark Meyer, Bucknell University
8:30	When do we Become Dinosaurs: Life After Grad School Janet Wittes*, Statistics Collaborative
9:00	Strategic Planning and Management of Your Academic Career in Biostatistics Richard John Cook*, Universitiy of Waterloo
9:30	Statistical Theory, Policy Fact: Preparing for the Role of a Government Statistician Steven Hoberman*, U.S. Food and Drug Administration
10:00	Floor Discussion
19.	Precision Medicine: Statistical Challenges and Opportunities Sponsors: ENAR, ASA Biometrics Section Organizer & Chair : Bei Jiang, Columbia University & New York University
8:30	Machine Learning and Precision Medicine Michael R. Kosorok*, University of North Carolina, Chapel Hill
8:55	Adaptive Treatment Assignment: Getting Personal in Oncology Peter F. Thall*, University of Texas MD Anderson Cancer Center
9:20	Identifying Biosignatures for Placebo Response Using High Dimensional Functional Data Thaddeus Tarpey* and Eva Petkova, New York University Todd Ogden, Columbia University Jie Vera Tian, Wright State University
9:45	Optimizing the Personalized Timing for Treatment Initiation with Random Decision Points Lu Wang* and Yebin Tao, University of Michigan
10:10	Floor Discussion
20.	Innovative Statistical Methodology for Modeling Growth in Fetuses, Children, and Adolescents Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology Organizer & Chair: Sung Duk Kim, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
8:30	Predicting Poor Pregnancy Outcomes from Multivariate Ultrasound Fetal Growth Data Paul S. Albert*, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
9:00	Modeling Childhood Growth Data with Historical Functional Regression and Landmarking Jonathan E. Gellar*, Mathematica Policy Research Lei Huang, Johns Hopkins Bloomberg School of Public Health Luo Xiao, North Carolina State University Ciprian M. Crainiceanu, Johns Hopkins Bloomberg School of Public Health
9:30	SITAR - A Shape Invariant Model for Human Growth in Infancy and Puberty Tim J. Cole*, University College London Institute of Child Health
10:00	Discussant: Amy Herring, University of North Carolina, Chapel Hill
21.	Recent Advances in Lifetime Data Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology
------------	---
	Organizer & Chair: Mei-Ling Ting Lee, University of Maryland, College Park
8:30	Estimation and Inference for the Incremental Cost-Effectiveness Ratio for Censored Survival Data
	Donna L. Spiegelman* , Polyna Khudyakov and Molin Wang , Harvard School of Public Health
8:55	Statistical Methods for Recurrent Event Data with Missing Event Category
	Jianwen Cai*, Feng-Chang Lin and Jason P. Fine, University of North Carolina, Chapel Hill Huichuan J. Lai, University of Wisconsin, Madison
9:20	Efficient Design and Analysis of Prevalent Cohort Studies
	Yu Shen*, University of Texas MD Anderson Cancer Center Hao Liu, Baylor College of Medicine Jing Ning, University of Texas MD Anderson Cancer Center Jing Qin, National Institute of Alleroy and Infectious Disease, National Institutes of Health
9:45	Variable Selection for Penalized Threshold Regression
	Xin He* and Mei-Ling Ting Lee, University of Maryland, College Park
- 10:10	Floor Discussion
99	Analysis of Longitudinally Observed Eurotional Nata
LL.	Analysis of Longitudinally observed runctional bala Sponsors: IMS, ENAR Organizer & Chair: Damla Senturk University of California Los Angeles
8.30	A Functional Data Model for Analyzing Longitudinal Change of Daily Physical Activity
0.00	Oliver Chen. Johns Hopkins University
	Luo Xiao*, North Carolina State University
	Martin Lindquist and Jennifer Schrack, Johns Hopkins University Luigi Ferrucci, National Institute on Aging, National Institutes of Health Ciprian Crainiceanu, Johns Hopkins University
9:00	Modern Analysis of Longitudinal Functional Data
	So Young Park and Ana-Maria Staicu*, North Carolina State University
9:30	Inferring Brain Signal Synchronicity from a Sample of EEG Readings
	Donatello Telesca*, Qian Li, Damla Senturk and Catherine Sugar, University of California, Los Angeles
10:00	Discussant:
	Jeffrey Morris, University of Texas MD Anderson Cancer Center
23	CONTRIBUTED PAPERS: Adaptive Designs and Adaptive Bandomization
201	Sponsor: ENAR
	Chair: Mercedes Bravo, Children's Environmental Health Initiative
8:30	Optimal and Lead-In Adaptive Allocation for Binary Outcomes: A Comparison of Bayesian Methodologies
	Roy T. Sabo*, Virginia Commonwealth University Ghalib Bello, Arbor Research Collaborative for Health
8:45	More Efficient Treatment Comparison in Cross-Over Design by Allocating Subject Based on Ranked Auxiliary Variables
-	Yisong Huang* and Hani Samawi, Georgia Southern University
9:00	A Bayesian Sequential Design with Binary Outcome
	Han Zhu*, Qingzhao Yu and Donald Mercante, Louisiana State University

9:15	An Efficient Method to Simulate Bayesian Adaptive Clinical Trials
_	Zhenning Yu*, Viswanathan Ramakrishnan and Caitlyn Ellerbe, Medical University of South Carolina
9:30	Multi-Stage Dose-Schedule Finding Designs for Pre-Clinical Studies in Stroke
_	Chunyan Cai*, University of Texas Health Science Center, Houston Jing Ning and Xuelin Huang, University of Texas MD Anderson Cancer Center
9:45	The Most Powerful Test and the Order of Error Probabilities for Response Adaptive Designs
_	Yanqing Yi*, Memorial University of Newfoundland Xuan Li, University of Minnesota, Duluth
10:00	Floor Discussion
24.	CONTRIBUTED PAPERS: Clinical Trials Sponsor: ENAR
0.00	Chair: Ritesh Ramchandani, Harvard University
8:30	Stochastic Modeling of Patients Recruitment in Clinical Irials
0.45	A Multi State Model for Designing Clinical Trials for Testing Overall Survival Allowing
0.43	for Crossover after Progression
	Fang Xia*, University of Texas MD Anderson Cancer Center Stephen L. George and Xiaofei Wang, Duke University
9:00	Control of False Positives in Randomized Phase III Clinical Trials
	Changyu Shen*, Ziyue Liu and Huiping Xu, Indiana University Hai Liu, Gilead Sciences, Inc. Cynthia Yue, Indiana University
9:15	One-Sided Global Tests for Multivariate Outcomes in Randomized Trials
	Donald Joseph Hebert*, University of Rochester Medical Center
9:30	Inequality in Treatment Benefits: Can we Determine if a New Treatment Benefits the Many or the Few?
_	Emily J. Huang*^, Johns Hopkins University Ethan X. Fang, Princeton University Michael A. Rosenblum, Johns Hopkins University
9:45	Factorial Clinical Trials for Hybrid Research Studies: Design and Analysis of Optimizing Treatment for Complicated Grief
	Christine M. Mauro* and Xin Qiu, Columbia University Donglin Zeng, University of North Carolina, Chapel Hill Naihua Duan and Yuanjia Wang, Columbia University
10:00	Estimating Individualized Treatment Rules for Ordinal Treatments
	Jingxiang Chen*^, Yufeng Liu, Michael R. Kosorok, University of North Carolina, Chapel Hill Haoda Fu and Xuanyao He, Eli Lilly and Company
25.	CONTRIBUTED PAPERS: Clustered Data Methods
	Sponsor: ENAR
	Chair: Grant Brown, University of Iowa
8:30	Learning Parameter Heterogeneity in Data Integration
	Lu Tang* and Peter X.K. Song, University of Michigan

ENAR 2016
Scientific Program
Monday March 7

8:45	Clusters with Random Size: Weighted Estimation for Compound Symmetry and AR(1) Models
	Lisa Hermans [*] , Universiteit Hasselt, Belgium Vahid Nassiri, Katholieke Universiteit Leuven, Belgium Geert Molenberghs, Universiteit Hasselt and Katholieke Universiteit Leuven, Belgium Michael G. Kenward, London School of Hygiene and Tropical Medicine Wim Van der Elst and Marc Aerts, Universiteit Hasselt, Belgium Geert Verbeke, Katholieke Universiteit Leuven and Universiteit Hasselt, Belgium
9:00	Goodness of Fit Test for Multinomial Regression Model in NUN Study
_	Zhiheng Xie* and Richard Kryscio, University of Kentucky
9:15	Sequential Imputation Using Marginal Models
-	Recai M. Yucel*, State University of New York, Albany Zeynep I. Kalaylioglu, Middle East Technical University
9:30	A Robust and Flexible Method to Estimate Association for Sparse Clustered Data
_	Lijia Wang* and John J. Hanfelt, Emory University
9:45	Joint Clustering and Inference in Functional Data Protein Spectroscopic Profiles: Applications in the Eye Lens Protein Crystallin
-	Miranda L. Lynch*, University of Connecticut Health Center
10:00	Mixture Modeling For Longitudinal Data
	Xiwei Tang* and Annie Qu, University of Illinois, Urbana-Champaign
26.	CONTRIBUTED PAPERS: High Dimensional Modeling and Inference Sponsor: ENAR Chair: Kean Ming Tan, Princeton University
8:30	Provable Smoothing Approach in High Dimensional Generalized Regression Model
	Ferry Herry, Johnson Handling, Halissonith
_	Honglang Wang*, Indiana University-Purdue University, Indianapolis
8:45	Fang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations
8:45	Hang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan
8:45 9:00	Fang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity
8:45 9:00	Fang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania
8:45 9:00 9:15	Fang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models
8:45 9:00 9:15	Fang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Akshita Chawla*, Merck Research Laboratories Tapabrata Maiti, Michigan State University
8:45 9:00 9:15 9:30	Fang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Akshita Chawla*, Merck Research Laboratories Tapabrata Maiti, Michigan State University High-Dimensional Inference for Cox Model
8:45 9:00 9:15 9:30	Hang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Akshita Chawla*, Merck Research Laboratories Tapabrata Maiti, Michigan State University High-Dimensional Inference for Cox Model Ethan X. Fang*^, Yang Ning and Han Liu, Princeton University
8:45 9:00 9:15 9:30 9:45	Fang Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Akshita Chawla*, Merck Research Laboratories Tapabrata Maiti, Michigan State University High-Dimensional Inference for Cox Model Ethan X. Fang*^, Yang Ning and Han Liu, Princeton University On Longitudinal Gaussian Graphical Models: Estimation and Asymptotic Inference
8:45 9:00 9:15 9:30 9:45	Fang Han, Johns Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Akshita Chawla*, Merck Research Laboratories Tapabrata Maiti, Michigan State University High-Dimensional Inference for Cox Model Ethan X. Fang*^, Yang Ning and Han Liu, Princeton University On Longitudinal Gaussian Graphical Models: Estimation and Asymptotic Inference Quanquan Gu*, University of Virginia Yuan Cao, Yang Ning and Han Liu, Princeton University
8:45 9:00 9:15 9:30 9:45	Parig Hah, Johns Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Akshita Chawla*, Merck Research Laboratories Tapabrata Maiti, Michigan State University High-Dimensional Inference for Cox Model Ethan X. Fang*^, Yang Ning and Han Liu, Princeton University On Longitudinal Gaussian Graphical Models: Estimation and Asymptotic Inference Quanquan Gu*, University of Virginia Yuan Cao, Yang Ning and Han Liu, Princeton University A General Theory of Hypothesis Tests and Confidence Regions for Sparse High Dimensional Models
8:45 9:00 9:15 9:30 9:45 10:00	Parig Han, John's Hopkins University Honglang Wang*, Indiana University-Purdue University, Indianapolis Large Covariance Matrix Estimation from Temporally Dependent Observations Hai Shu* and Bin Nan, University of Michigan Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity Tony Cai and Zijian Guo*, University of Pennsylvania Improved Estimation for High Dimensional Generalized Linear Models Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Akshita Chawla*, Merck Research Laboratories Tapabrata Maiti, Michigan State University High-Dimensional Inference for Cox Model Ethan X. Fang*^, Yang Ning and Han Liu, Princeton University On Longitudinal Gaussian Graphical Models: Estimation and Asymptotic Inference Quanquan Gu*, University of Virginia Yuan Cao, Yang Ning and Han Liu, Princeton University A General Theory of Hypothesis Tests and Confidence Regions for Sparse High Dimensional Models Yang Ning* and Han Liu, Princeton University

27.	CONTRIBUTED PAPERS: Prediction and Prognostic Modeling Sponsor: ENAR Chair: Yan Yuan, University of Alberta
8:30	Predicting Alzheimer's Disease with Bivariate Mixture Modeling Frank Appiah*, Erin Abner, David Fardo, Glen Mays and Richard Charnigo, University of Kentucky
8:45	Time-Dependent Predictive Accuracy Curve Under Marker-Dependent Sampling Zhaoyin Zhu*, New York University
-	Alaofei Wang, Duke University Paramita Saha Chaudhuri, McGill University
9:00	Estimating the Impact of Basing Treatment Decisions on Markers that Predict Risk Marshall D. Brown* and Holly Janes, Fred Hutchinson Cancer Research Center
9:15	Bayesian Inference for Black Hispanic Breast Cancer Survival Data Hafiz Khan*, Texas Tech University
9:30	Design and Analyses of Two-Phase Studies for Predicting Binary Outcomes Xinglei Chai* and Jinbo Chen University of Pennsylvania
9:45	Combining Multiple Biomarkers Linearly to Maximize the Partial Area Under the ROC Curve
	Qingxiang Yan*, Leonidas E. Bantis and Ziding Feng, University of Texas MD Anderson Cancer Center
10:00	Building Better Gene Signatures with Rank-Based Features and Meta-Analysis Prasad Patil* and Jeffrey T. Leek, Johns Hopkins University
40.45 40.00	Defreekment Breekwith Ovy Fyhikitere
10:15 am - 10:30 am	KETTESNMENT BLEAK WITH UUL EXNIDITOLS
10:15 am - 10:30 am 10:30 am - 12:15 pm	Oral Posters & Presentations
10:15 am - 10:30 am 10:30 am - 12:15 pm 28.	Refreshment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis
10:15 am - 10:30 am 10:30 am - 12:15 pm 28 .	Refreshment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizer: Michael Wu, Fred Hutchinson Cancer Research Center Chair: Ni Zhao, Fred Hutchinson Cancer Research Center
10:15 am - 10:30 am 10:30 am - 12:15 pm 28. 10:30	Refreshment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizer: Michael Wu, Fred Hutchinson Cancer Research Center Chair: Ni Zhao, Fred Hutchinson Cancer Research Center Statistical Analysis of Data in Metric Space with Applications in Microbiome Studies Hongzhe Li*, University of Pennsylvania
10:15 am - 10:30 am 10:30 am - 12:15 pm 28. 10:30 10:30	Refreshment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizer: Michael Wu, Fred Hutchinson Cancer Research Center Chair: Ni Zhao, Fred Hutchinson Cancer Research Center Statistical Analysis of Data in Metric Space with Applications in Microbiome Studies Hongzhe Li*, University of Pennsylvania High-precision Microbial Community Functional Profiling and Meta'omic Integration Curtis Huttenhower*, Harvard School of Public Health
10:15 am - 10:30 am 10:30 am - 12:15 pm 28. 10:30 10:55 11:20	Refreshment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizer: Michael Wu, Fred Hutchinson Cancer Research Center Chair: Ni Zhao, Fred Hutchinson Cancer Research Center Statistical Analysis of Data in Metric Space with Applications in Microbiome Studies Hongzhe Li*, University of Pennsylvania High-precision Microbial Community Functional Profiling and Meta'omic Integration Curtis Huttenhower*, Harvard School of Public Health Some Challenges in the Analysis of Microbiome Data: Old Wine in a New Bottle with a Twist! Some Challenges in the Analysis of Microbiome Data: Old Wine in a New Bottle with
10:15 am - 10:30 am 10:30 am - 12:15 pm 28. 10:30 10:55 11:20	Refreshment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizer: Michael Wu, Fred Hutchinson Cancer Research Center Chair: Ni Zhao, Fred Hutchinson Cancer Research Center Statistical Analysis of Data in Metric Space with Applications in Microbiome Studies Hongzhe Li*, University of Pennsylvania High-precision Microbial Community Functional Profiling and Meta'omic Integration Curtis Huttenhower*, Harvard School of Public Health Some Challenges in the Analysis of Microbiome Data: Old Wine in a New Bottle with a Twist! Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Siddhartha Mandal, Public Health Foundation of India, Gurgaon, India Shyamal D. Peddada*, National Institute of Environmental Health Sciences, National Institutes of Health
10:15 am - 10:30 am 10:30 am - 12:15 pm 28. 10:30 10:30 10:55 11:20 11:45	Retreshment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizer: Michael Wu, Fred Hutchinson Cancer Research Center Chair: Ni Zhao, Fred Hutchinson Cancer Research Center Statistical Analysis of Data in Metric Space with Applications in Microbiome Studies Hongzhe Li*, University of Pennsylvania High-precision Microbial Community Functional Profiling and Meta'omic Integration Curtis Huttenhower*, Harvard School of Public Health Some Challenges in the Analysis of Microbiome Data: Old Wine in a New Bottle with a Twist! Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Siddhartha Mandal, Public Health Foundation of India, Gurgaon, India Shyamal D. Peddada*, National Institute of Environmental Health Sciences, National Institutes of Health Flexible Methods for Testing Microbiome by Environment Interactions Michael C. Wu*, Fred Hutchinson Cancer Research Center
10:15 am - 10:30 am 10:30 am - 12:15 pm 28. 10:30 10:55 11:20 11:45 12:10	Retrestiment Break with our Exhibitors Oral Posters & Presentations Statistical Methods for Addressing Challenges in Microbiome and Metagenomic Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizer: Michael Wu, Fred Hutchinson Cancer Research Center Chair: Ni Zhao, Fred Hutchinson Cancer Research Center Statistical Analysis of Data in Metric Space with Applications in Microbiome Studies Hongzhe Li*, University of Pennsylvania High-precision Microbial Community Functional Profiling and Meta'omic Integration Curtis Huttenhower*, Harvard School of Public Health Some Challenges in the Analysis of Microbiome Data: Old Wine in a New Bottle with a Twist! Abhishek Kaul, National Institute of Environmental Health Sciences, National Institutes of Health Siddhartha Mandal, Public Health Foundation of India, Gurgaon, India Shyamal D. Peddada*, National Institute of Environmental Health Sciences, National Institutes of Health Flexible Methods for Testing Microbiome by Environment Interactions Michael C. Wu*, Fred Hutchinson Cancer Research Center Floor Discussion

29.	Recent Advances and Challenges in Adaptive Design for Clinical Trials Sponsors: ENAR, ASA Biopharmaceutical Section Organizer: Ying Yuan, University of Texas MD Anderson Cancer Center Chair: Haitao Pan, University of Texas MD Anderson Cancer Center
10:30	Continual Reassessment Method with Multiple Toxicity Constraints for Late Onset and Cumulative Toxicities Shing M. Lee*, Columbia University
10:55	Sequential Design Method for Bioequivalence Test with Serial Sampling Data Fangrong Yan* and Junling Liu, Pharmaceutical University, China Xueling Huang, University of Texas MD Anderson Cancer Center
11:20	Bayesian Optimal Interval (BOIN) Designs for Phase I Clinical Trials Ying Yuan* and Suyu Liu, University of Texas MD Anderson Cancer Center
11:45	Phase I-II Clinical Trials with Delayed Outcomes Joseph S. Koopmeiners*, University of Minnesota
12:10	Floor Discussion
30.	Health Care Provider Evaluation Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology Organizer & Chair: Kevin He, University of Michigan
10:30	A Dirichlet Process Mixture Model for Survival Outcome Data: Assessing Nationwide Kidney Transplant Centers Lili Zhao, Jing Chunzi Shi, Tempie Shearon and Yi Li*, University of Michigan
 10:55	Healthcare Provider Comparisons: Identifying and Meeting Goals Thomas A. Louis*, Johns Hopkins Bloomberg School of Public Health
11:20	Methods for Profiling Medical Facilities John D. Kalbfleisch* and Kevin Zhi He, University of Michgan
11:45	On the Accuracy of Classifying Hospitals on Their Performance Measures Yulei He*, Centers for Disease Control and Prevention Sharon-lise Normand, Harvard Medical School
12:10	Floor Discussion
31.	The Future of Biostatistical Funding Mechanisms Sponsor: ENAR Organizers: Ciprian Crainiceanu, Johns Hopkins University and Hernando Ombao, University of California, Irvine Chair: Hernando Ombao, University of California, Irvine
10:30 12:00	Discussants: Ciprian M. Crainiceanu, Johns Hopkins University Francesca Dominici, Harvard University Debashis Ghosh, Colorado School of Public Health Lurdes Inoue, University of Washington Michael R. Kosorok, University of North Carolina, Chapel Hill Eloor Discussion
12.00	

32.	Computer-Intensive Bayesian Techniques and Neurostatistics: A Peaceful Co-Existence?
	Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Imaging
	Organizer & Chair: Dipankar Bandyopadhyay, University of Minnesota
10:30	Bayesian Inference for Cluster-Structured High-Dimensional Ordinary Differential Equations with Applications to Brain Networks
	Tingting Zhang*, University of Virginia Brian Caffo, Johns Honkins, University
	Qiannan Yin, University of Virginia
_	Dana Boatman-Reich, Johns Hopkins University
10:55	A Novel Distributional ICA Model for Multimodal Neuroimaging Data
_	Ying Guo* and Subhadip Pal, Emory University Jian Kang, University of Michigan
11:20	A Bayesian Group Sparse Multi-Task Regression Model for Imaging Genomics
	Keelin Greenlaw, University of Waterloo Farouk S. Nathoo* and Mary Lesperance, University of Victoria
	Elena Szefer and Jinko Graham, Simon Fraser University
11:45	Analysis of Multiple Sclerosis Lesions via a Bivariate Spatial GLM with Spatially Varying Coefficients
_	Timothy D. Johnson*, University of Michigan
12:00	Floor Discussion
33.	Survival Analysis and Genetics
	Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology, ASA Statistics in Genomics and Genetics Section
	Organizer: Ruzong Fan, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
	Chair: Xin Tian, National Heart, Lung and Blood Institute, National Institutes of Health
10:30	Using Threshold Regression to Analyze Survival Data from Complex Surveys: With Application to NHANES III Phase II Genetic Data
-	Yan Li , Dandan Liao, and Mei-Ling Ting Lee*, University of Maryland
10:55	Efficient Tests of Association for Survival Times from Two-Phase Outcome- Dependent Samples
-	Jerald F. Lawless*, University of Waterloo
11:20	Statistical Issues in Genome-wide Association Studies of Bivariate Survival Outcomes
	Ying Ding, Yi Liu and Qi Yan, University of Pittsburgh Lars G. Fritsche and Goncalo G. Abecasis, University of Michigan Anand Swaroop and Emily Y. Chew, National Eye Institute, National Institutes of Health Daniel E. Weeks and Wei Chen*, University of Pittsburgh
11:45	Gene-based Association Analysis for Censored Traits via Fixed Effect Functional Regressions
_	Ruzong Fan*, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Yifan Wang, U.S. Food and Drug Administration Yan Qi, Ying Ding, Daniel E. Weeks and Wei Chen, University of Pittsburgh Haobo Ren, Regeneron Pharmaceuticals, Inc. Richard J. Cook, University of Waterloo Momiao Xiong, University of Texas Health Science Center, Houston Fmily Y. Chew National Eve Institute. National Institutes of Health
12:10	Floor Discussion

34.	Missing Date in Non-Inferiority Trials
	Sponsors: ENAR, ASA Biopharmaceutical Section
	Organizer: Freda Cooner, U.S. Food and Drug Administration
(0.00	Chair: John Scott, U.S. Food and Drug Administration
10:30	The Impact of Missing Data in Historical Placebo-Controlled Trials
	Steven Michael Snapinn*, Amgen Inc.
11:00	Missing Data Considerations for Non-inferiority Trials
	Mark D. Rothmann*, U.S. Food and Drug Administration
11:30	Discussants:
	Peter Mesenbrink. Novartis
	Gerry Gray, U.S. Food and Drug Administration
12:00	Floor Discussion
35.	IMS Medallion Lecture
	Sponsors: IMS, ENAR
	Organizer & Chair: Babak Shahbaba, University of California, Irvine
10:30	Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings
	Peter J. Diggle, Ph.D.*, CHICAS, Lancaster University Medical School
36 .	CONTRIBUTED PAPERS: Analysis of Imaging Data
	Sponsor: ENAR
	Chair: Ronald Gangnon, University of Wisconsin
10:30	Mixed Effects Models to Find Differences in Multi-Subject Functional Connectivity
	Manjari Narayan** and Genevera I. Allen, Rice University
10:45	Deformation Analysis of Diffusion Tensor Data Using Random Forests
	Neda Sadeghi*, Eunice Kennedy Shriver National Institute of Child Health and Human Devel-
	M. Okan Irfanoglu and Amritha Nayak, Eunice Kennedy Shriver National Institute of Child
	Health and Human Development, National Institutes of Health and Henry M. Jackson Foundation
	Cibu I homas, Eunice Kennedy Shriver National Institute of Child Health and Human Develop- ment National Institutes of Health and Center for Neuroscience and Regenerative Medicine
	Carlo Pierpaoli , Eunice Kennedy Shriver National Institute of Child Health and Human Devel-
	opment, National Institutes of Health
11:00	On Estimating Functional Connectivity for Neuroimaging Data
	Ivor Cribben*, University of Alberta
11:15	Multilinear Principal Components Analysis in Spatially Varying Coefficient Model for Neuroimage Data
	Tianming Zhang* and Yanyuan Ma, University of South Carolina
	Linglong Kong, University of Alberta
11:30	Assessing Uncertainty in Dynamic Functional Connectivity
	Maria Aleksandra Kudela*^ and Jaroslaw Harezlak, Indiana University School of Public Health Martin A. Lindquist, John Hopkins Bloomberg School of Public Health
11:45	Modeling Connectivity in High-Dimensional Brain Signals
	Yuxiao Wang*, University of California, Irvine
	Chee-Ming Ting, Universiti Teknologi Malaysia
	nemanuo ombao, oniversity of cantornia, irvine

12:00	Statistical Approaches for Exploring Brain Connectivity with Multi-Modal Neuroimaging Data
	Phebe B. Kemmer* and Ying Guo, Emory University DuBois Bowman, Columbia University
37.	CONTRIBUTED PAPERS: Bayesian Clinical Trials Sponsor: ENAR
10:30	Credible Subgroup Inference for Bounding the Benefiting Subpopulation for Many
	Patrick Schnell*, University of Minnesota Qi Tang, AbbVie Peter Mueller, University of Texas, Austin Bradley P. Carlin, University of Minnesota
10:45	Incorporation of Stochastic Engineering Models as Prior Information in Bayesian Medical Device Trials
	Rajesh Nair*, U.S. Food and Drug Administration Tarek Haddad and Adam Himes, Medtronic Laura Thompson and Telba Irony, U.S. Food and Drug Administration
11:00	Bayesian Adaptive Dose Finding for Combination Therapy in Phase I Oncology Trials Chenyi Pan*, University of Virginia Yun Shen, Helen Zhou, Parul Gulati, Xiaowei Guan and Katy Simonsen, Bristol-Myers Squibb
11:15	Using Data Augmentation to Facilitate Conduct of Phase I/II Clinical Trials with Delayed Outcomes
-	Ick Hoon Jin*, University of Notre Dame Suyu Liu, Peter F. Thall and Ying Yuan, University of Texas MD Anderson Cancer Center
11:30	Control Charts for Monitoring Accumulating Adverse Event Count Frequencies from Single and Multiple Blinded Trials
11:45	A. Lawrence Gould , Merck Research Laboratories Application of Bayesian Methods for Making Go/No-Go Decision in Clinical Trials with an Example Rodney Croos-Dabrera* and Misun Lee. Astellas Pharma Development
12:00	Floor Discussion
38.	CONTRIBUTED PAPERS: Diagnostic and Screening Tests Sponsor: ENAR Chair: Donna McClish, Virginia Commonwealth University
10:30	Comparing Paired Diagnostic Tests Based on Joint Testing of the AUC and the Youden Index Jingjing Yin*, Georgia Southern University Lili Tian, University at Buffalo Hani Samawi, Georgia Southern University
10:45	Modeling Agreement Between Many Raters using an Ordered Classification Scale Kerrie P. Nelson*, Boston University Don Edwards, University of South Carolina
11:00	On the Use of Min-Max Combination of Biomarkers to Maximize the Partial Area Under the ROC Curve Hua Ma* and Susan Halabi, Duke University

ENA
R 20
16 S
cientific
Program
Monday
March 7

11:15	Estimation of Discrete Survival Function Through the Modeling of Diagnostic Accuracy for Mismeasured Outcome Data
	Abidemi K. Adeniji*, Boehringer Ingelheim Pharmaceuticals
	Hee-Koung Joeng, University of Connecticut Naitee Ting, Boehringer Ingelheim Pharmaceuticals
_	Ming-Hui Chen, University of Connecticut
11:30	The Optimal Length of a Sequence of Tests for Classification Tasks
	Christine M. Schubert Kabban, Air Force Institute of Technology Donna K. McClish, Virginia Commonwealth University
11:45	A Placement Value Based Approach to Correlated and Concave ROC Curves with Order Constraints
_	Zhen Chen*, Sung Duk Kim and Beom Seuk Hwang, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
12:00	An Application of Factor Analysis in Developing an Abbreviated Questionnaire: Case Study from Neurology
	Jayawant Mandrekar*, Mayo Clinic
39 .	CONTRIBUTED PAPERS: Longitudinal Data
	Sponsor: ENAR
	Chair: Jarcy Zee, Arbor Research Collaborative for Health
10:30	Improving Power with Generalized Estimating Equations in Small-Sample Longitudinal Study Settings
_	Philip M. Westgate* and Woodrow W. Burchett, University of Kentucky
10:45	On the Bridge Between Bridge Distributions, Marginalized
_	Geert Molenberghs*, Universiteit Hasselt and Katholieke Universiteit Leuven, Belgium
11:00	A Comparison of Three Models in Multivariate Binary Longitudinal Analysis
-	Hissah Alzahrani* and Elizabeth Slate, Florida State University
11:15	Discrepancy-Based Parameter Estimation for Balancing Efficiency and Robustness in Fitting State-Space Models
-	Nan Hu* and Joseph Cavanaugh, University of Iowa
11:30	Improved Power in Crossover Designs Through Linear Combinations of Baselines
_	Thomas Jemielita* and Mary Putt, University of Pennsylvania Devan Mehrotra, Merck Research Laboratories
11:45	A Cautionary Note on Using Generalized Estimating Equations to Estimate Transition Models
	Joe D. Bible*, Paul S. Albert and Danping Liu, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
12:00	Some Structured Antedependence Models for Multivariate Longitudinal Data
	Chulmin Kim*, University of West Georgia
40.	ORAL POSTERS: Machine Learning
	Sponsor: ENAR
	Chair: Russell Shinohara, University of Pennsylvania
40a.	INVITED ORAL POSTER:
	Regression for Diock-Inissing withit-Moudiny Data
-	ממשר הם, עמווסוש בו, דמוסוש בום , סוויסוסוגי סרוסונור סמוסווום, סומטור וווי

Monday March 7	
ENAR 2016 Scientific Program	

40b.	INVITED ORAL POSTER: A Novel and Efficient Algorithm for De Novo Discovery of Mutated Driver Pathways in Cancer
	Binghui Liu , Northeast Normal University, China Xiaotong Shen and Wei Pan* , University of Minnesota
40c.	Extending the Method, Feature Augmentation Via Nonparametrics and Selection, to the Ordinal Response Setting
_	Kyle L. Ferber* and Kellie J. Archer, Virginia Commonwealth University
40d.	Penalized Bayesian Cumulative Logit Model for High-Dimensional Datasets
_	Qing Zhou* and Kellie J. Archer, Virginia Commonwealth University
40e.	Sparse Mediation Analysis for High-Dimensional Mediators
_	Yi Zhao* and Xi Luo, Brown University
40f.	Inference of Genetic Network from Next Generation Sequencing Data
_	Bochao Jia* and Faming Liang, University of Florida
40g.	Interpretable High-Dimensional Inference Via Score Maximization with an Application in Neuroimaging
-	Simon N. Vandekar* and Russell T. Shinohara, University of Pennsylvania
40h.	Single Index Latent Factor Model Based on High-Dimensional Features
-	Hojin Yang*, Hongtu Zhu and Joseph G. Ibrahim, University of North Carolina, Chapel Hill
40i .	Mixed Models for Ordinal Outcomes in Twin and Sibling Studies with High-Dimensional Covariate Spaces
_	Amanda E. Gentry* and Kellie J. Archer, Virginia Commonwealth University
40j.	Evolving Bayesian Networks: Applications to Genomic Pathways and Learning Modules
	Riten Mitra*, University of Louisville
	Peter Mueller, University of Texas, Austin
40k.	Sparse Group Lasso and SVM with Overlapping Groups
	David Degras*, DePaul University
12:15 pm - 1:30 pm	Roundtable Luncheons
1:45 am - 3:30 pm	Oral Posters & Presentations
41	High-Throughnut Expression Landscane: What's Next for Methods?
41.	High-Throughput Expression Landscape: What's Next for Methods?
41.	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University
41.	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data
41. 1:45	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*,
41. 1:45	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public Health
41. 1:45 2:10	High-Throughput Expression Landscape: What's Next for Methods?Sponsors: ENAR, ASA Statistics in Genomics and Genetics SectionOrganizer & Chair: Jeffrey Leek, Johns Hopkins UniversityOvercoming Bias and Batch Effects in RNA-Seq DataMichael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public HealthIntegrative Models for Predicting the Regulatory Impact of Rare Non-coding Variation
41. 1:45 2:10	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public Health Integrative Models for Predicting the Regulatory Impact of Rare Non-coding Variation Alexis Battle*, Johns Hopkins University
41. 1:45 2:10 2:35	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public Health Integrative Models for Predicting the Regulatory Impact of Rare Non-coding Variation Alexis Battle*, Johns Hopkins University Annotation-agnostic Differential Expression Analysis
41. 1:45 2:10 2:35	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public Health Integrative Models for Predicting the Regulatory Impact of Rare Non-coding Variation Alexis Battle*, Johns Hopkins University Annotation-agnostic Differential Expression Analysis Leonardo Collado-Torrres* and Alyssa Frazee, Johns Hopkins University
41. 1:45 2:10 2:35	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public Health Integrative Models for Predicting the Regulatory Impact of Rare Non-coding Variation Alexis Battle*, Johns Hopkins University Annotation-agnostic Differential Expression Analysis Leonardo Collado-Torrres* and Alyssa Frazee, Johns Hopkins University Michael I. Love and Rafael A. Irizarry, Dana-Farber Cancer Institute and Harvard School of Public Health
41. 1:45 2:10 2:35	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public Health Integrative Models for Predicting the Regulatory Impact of Rare Non-coding Variation Alexis Battle*, Johns Hopkins University Annotation-agnostic Differential Expression Analysis Leonardo Collado-Torrres* and Alyssa Frazee, Johns Hopkins University Michael I. Love and Rafael A. Irizarry, Dana-Faber Cancer Institute and Harvard School of Public Health
41. 1:45 2:10 2:35	High-Throughput Expression Landscape: What's Next for Methods? Sponsors: ENAR, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jeffrey Leek, Johns Hopkins University Overcoming Bias and Batch Effects in RNA-Seq Data Michael I. Love and Rafael A. Irizarry*, Dana-Faber Cancer Institute and Harvard School of Public Health Integrative Models for Predicting the Regulatory Impact of Rare Non-coding Variation Alexis Battle*, Johns Hopkins University Annotation-agnostic Differential Expression Analysis Leonardo Collado-Torrres* and Alyssa Frazee, Johns Hopkins University Michael I. Love and Rafael A. Irizarry, Dana-Farber Cancer Institute and Harvard School of Public Health Annotation-agnostic Differential Expression Analysis Leonardo Collado-Torrres* and Alyssa Frazee, Johns Hopkins University Michael I. Love and Rafael A. Irizarry, Dana-Farber Cancer Institute and Harvard School of Public Health Andrew Jaffe, Lieber Institute for Brain Development Jeffrey Leek, Johns Hopkins University

Detecting Differential Usage of Exons using RNA-Seq Data
Alejandro Reyes*, European Molecular Biology Laboratory
Simon Anders, Institute for Molecular Medicine Finland
Otatistical locuse in Estimating Health Disperities Heing Compley Compley
Statistical Issues III Estimating Health Disparities Using Complex Samples
Organizer: Mandi Yu, National Cancer Institute, National Institutes of Health
Chair: Fang-Shu Ou, Mayo Clinic
Comparing Methods of Healthcare Disparity Estimation in the Presence of Complex
Survey Design
Benjamin Cook* and Alan Zaslavsky, Harvard Medical School
Covariance Enhanced Screening for Ultrahigh-Dimensional Classification
Yanming Li*, Kevin Ke, Ji Zhu and Yi Li, University of Michigan
Examining Socioeconomic Health Disparities Using a Rank-Dependent Rényi Index
Makram Talih*, Centers for Disease Control and Prevention
Estimating the Relative Concentration Index from Complex Survey Samples
Yan Li , University of Maryland, College Park
Floor Discussion
Statistical Methods for Neuroscience
Sponsors: ENAR, ASA Biometrics Section, ASA Mental Health Statistics Section, ASA Section on Statistics in Imaging
Organizer & Chair: Russell Shinohara, University of Pennsylvania
Multi-scale Factor Analysis of High Dimensional Time Series Data with Applications to fMRI
Hernando Ombao* and Yuxiao Wang, University of California, Irvine Chee-Ming Ting, Universiti Teknologi Malaysia
Kinematic Data in Motor Control Experiments
Jeff Goldsmith*, Columbia University
Iomoko Kitago, Columbia University Medical Center
Multivariate Pattern Analysis and Confounding in Neuroimaging
Kristin Linn [*] , Bilwaj Gaonkar, Jimit Doshi, Christos Davatzikos and Russell Shinohara, University of Pennsylvania
A Bayesian Approach to the Study of Dynamic Functional Connectivity Networks in fMRI Data
Michele Guindani*, University of Texas MD Anderson Cancer Center
Ryan Warnick and Marina Vannucci, Rice University
Erik Ernarul, University of New Mexico
Elena Allen and Vince Calhoun, MRN Mind Research Network and University of New Mexico

47

3
3
\Box
\geq
-
0
0
_
D
-
0
5
9
0
N

44.	Recent Advances in Statistical Methods for Genetic Epidemiology Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology, ASA Statistics in Genomics and Genetics Section
	Organizer & Chair: Swati Biswas, University of Texas at Dallas
1:45	Rare Variant Association Tests with Longitudinal Outcome Data
_	Zihuai He, Seungeung Lee, Min Zhang and Bhramar Mukherjee*, University of Michigan
2:10	Detecting Associations of Rare Variants with Common Diseases Using SNP Data on Families
_	Shili Lin*, The Ohio State University Meng Wang, Nationwide Children's Hospital
2:35	Detection of Set-based Gene-Environment Interactions in Families
-	Saonli Basu* and Brandon Coombes, University of Minnesota
3:00	Additive Models for Evaluating Predictive Biomarkers in Cancer Epidemiology Studies Jaya M. Satagopan*, Memorial Sloan Kettering Cancer Center
3:25	Floor Discussion
45.	Recent Advances in Survival Analysis with High-Dimensional Data Sponsor: ENAR
	Organizer: Gang Li, University of California, Los Angeles
	Chair: Donatello Telesca, University of California, Los Angeles
1:45	Feature Screening in Ultrahigh Dimensional Cox's Model
	Guangren Yang, Jinan University Ye Yu, Wells Fargo Bank
	Runze Li*, The Pennsylvania State University Anne Buu, University of Michigan
2:15	Integrating Multidimensional Omics Data for Cancer Prognosis
	Shuangge Ma*, Yale University
2:45	Survival Prediction from Large-scale Data using Metric Learning
	Daniel Conn and Christina Ramirez, University of California, Los Angeles
	Gang Li* , University of California, Los Angeles
3:15	Discussant:
	Yingying Fan, University of Southern California
46.	Dissecting Multiple Imputation from a Multi-Phase Inference Perspective Sponsor: ENAR
	Organizers: Zhiliang Ying, Columbia University, Hsin-Cheng Huang, Academia Sinica and Ruey S. Tsay, University of Chicago
	Chair: Zhiliang Ying, Columbia University
1:45	Dissecting Multiple Imputation from a Multi-phase Inference Perspective: What Happens When God's, Imputer's and Analyst's Models Are Uncongenial?
	Xianchao Xie, Two Sigma Xiaoli Meng*, Harvard University
2:15	Discussants:
	Trivellore E. Raghunathan, University of Michigan
	Tony Desmond, University of Guelph
3:25	Floor Discussion

47.	Innovative Clinical Trial Design and Analysis Methods Sponsors: ENAR, ASA Biometrics Section, ASA Biopharmaceutical Section Organizer: Haitao Chu, University of Minnesota Chair: Jing Zhang, University of Maryland
1:45	Bayesian Design of Superiority Clinical Trials for Recurrent Events Data with Applica- tions to Bleeding and Transfusion Events in Myelodyplastic Syndrome Joseph G. Ibrahim*, University of North Carolina, Chapel Hill Ming-Hui Chen, University of Connecticut Donglin Zeng, University of North Carolina, Chapel Hill Kuolung Hu and Catherine Jia, Amgen, Inc.
2:10	Statistical Methods for Conditional Survival Analysis Sin-Ho Jung*, Duke University Sunkyu Choi and Ho Yun Lee, Samsung Medical Center
2:35	Multi-arm Platform Designs for Screening Effective Treatments via Predictive Probability J. Jack Lee*, Brian P. Hobbs and Nan Chen, University of Texas MD Anderson Cancer Center
3:00	Optimal Flexible Sample Size Design with Robust Power Lu Cui*, Lanju Zhang and Bo Yang, AbbVie Inc.
3:25	Floor Discussion
48.	Statistical Advances in Evolutionary Dynamics of Infectious Diseases Sponsors: IMS, ENAR Organizer: Vladimir Minin, University of Washington Chair: Ali Shojaie, University of Washington
1:45	 Algorithms Linking Phylogenetic and Transmission Trees for Molecular Infectious Disease Epidemiology Eben Kenah*, University of Florida Tom Britton, Stockholm University M. Elizabeth Halloran, Fred Hutchinson Cancer Research Center and University of Washington Ira M. Longini, Jr., University of Florida
2:10	Phylodynamic Analysis with Limited Data: Emergence and Epidemiological Impact of Transmissible Defective Dengue Viruses Ruian Ke*, North Carolina State University John Aaskov, Queensland University of Technology Edward C. Holmes, University of Sydney James O. Lloyd-Smith, University of California, Los Angeles
2:35	An Efficient Bayesian Inference Framework for Coalescent-based Nonparametric Phylodynamics Shiwei Lan*, University of Warwick Julia A. Palacios, Harvard University and Brown University Michael Karcher and Vladimir N. Minin, University of Washington Babak Shahbaba, University of California, Irvine
3:00	Effects of Ignoring Recombination in Phylodynamics of Infectious Diseases Julia A. Palacios*, Harvard University and Brown University
3:25	Floor Discussion

49.	CONTRIBUTED PAPERS: Bayesian Semi-Parametric and Non-Parametric Methods Sponsor: ENAR
	Chair: A. Lawrence Gould, Merck Research Laboratories
1:45	Flexible Bayesian Survival Modeling with Semiparametric Time-Dependent and Shape- Restricted Covariate Effects
	Thomas A. Murray* and Brian P. Hobbs, University of Texas MD Anderson Cancer Center Daniel J. Sargent, Mayo Clinic Bradley P. Carlin, University of Minnesota
2:00	A Bayesian Semiparametric Approach for Panel Count Data
	Jianhong Wang* and Xiaoyan Lin, University of South Carolina, Columbia
2:15	Nonparametric Smoothing Estimation of Fecundability from a Conception Model Mohammed R. Chowdhury*, Kennesaw State University
2:30	Marginal Bayesian Hierarchical Model for Multivariate Binary Data to Estimate the Etiology of Childhood Pneumonia
0.45	
2:45	A Semiparametric Bayesian Approach to Borrow Information from Historical Control Data in Two Arm Clinical Trials.
3:00	Bayesian Multivariate Nonlinear Mixed Effects Models with a Matrix Stick-Breaking Process Prior
	Xiao Wu*, University of Florida Michael J. Daniels, University of Texas, Austin
3:15	Bayesian Additive Partial Linear Models with Measurement Error and Heteroscedastic Regression Error Variance
	Chang Liu and Sally W. Thurston*, University of Rochester
50.	CONTRIBUTED PAPERS: Bayesian Variable Selection Sponsor: ENAR
	Chair: Rajesh Nair, U.S. Food and Drug Administration
1:45	Altered Singular Bayesian Information Criteria for Bivariate Mixture Models
	Richard Charnigo*, University of Kentucky
	Qian Fan, Wells Fargo Buriko Voshida University of Kentucky
	Mathias Drton, University of Washington
	Hongying Dai, Children's Mercy Hospital
2:00	Bayesian Bi-Level Variable Selection
	Eunjee Lee*, Hongtu Zhu and Joseph G. Ibrahim, University of North Carolina, Chapel Hill
2:15	Bayesian Variable Selection for Skewed Heteroscedastic Response
	Libo Wang*^, Florida State University
	Debaiyoti Sinha and Debdeep Pati, Florida State University
	Stuart Lipsitz, Brigham and Women's Hospital
2:30	Bayesian Ranking and Selection with Application to Identification of Risk Genes
	Xiaoqian Sun* and Feng Luo, Clemson University
	Anand K. Srivastava, Greenwood Genetic Center
2:45	Anand K. Srivastava, Greenwood Genetic Center Bayesian Variable Selection in Additive Partial Linear Models with Error in Variables
2:45	Anand K. Srivastava, Greenwood Genetic Center Bayesian Variable Selection in Additive Partial Linear Models with Error in Variables Chang Liu*, Hongqi Xue and Sally W. Thurston, University of Rochester

3:00	Bayesian Feature Screening for Big Neuroimaging Data Via Massively Parallel Com- puting
	Jian Kang*, University of Michigan
3:15	The Bayesian Multivariate Regression for High Dimensional Longitudinal Data with Heavy-Tailed Errors
	Viral V. Panchal*, Daniel Linder and Hani Samawi, Georgia Southern University
51.	CONTRIBUTED PAPERS: Graphical Models Sponsor: ENAR Chair: Iver Cribban, Alberta, School of Ducinese
1.45	Chair: Not Chobert, Aberta School of Business
1:45	Lina Lin*, Mathias Drton and Ali Shojaie, University of Washington
2:00	High-Dimensional Robust Precision Matrix Estimation: Cellwise Corruption Under Epsilon-Contamination
-	Po-Ling Loh and Xin Lu Tan*, University of Pennsylvania
2:15	A New Ordinary Differential Equation Model for Reconstruction of Gene Regulatory Network
-	Yaqun Wang*, Rutgers, The State University of New Jersey Runze Li and Rongling Wu, The Pennsylvania State University
2:30	Detecting Hidden Characteristics for Network Data Within Latent Space Shiwen Shen* and Edsel Pena, University of South Carolina
2:45	Structured Sparse Multiple Co-Inertia Analysis with Applications to Genomics and Metabolomics Data
	Eun Jeong Min* and Qi Long, Emory University Rollins School of Public Health
3:00	Nonparametric Mixture of Gaussian Graphical Models, with Applications in Brain Functional Connectivity Estimation
	Kevin Haeseung Lee* and Lingzhou Xue, The Pennsylvania State University
3:15	A Joint Modeling Approach for Directed Acyclic Network Data
	Yan Zhou*, Merck & Co. Peter Song, University of Michigan
52.	CONTRIBUTED PAPERS: Multivariate Methods
	Sponsor: ENAR
	Chair: Geert Molenberghs, Universiteit Hasselt and Katholieke Universiteit Leuven, Belgium
1:45	Groupwise Envelope Model for Efficient Estimation and Response Variable Selection
-	Yeonhee Park*, University of Texas MD Anderson Cancer Center Zhihua Su, University of Florida
2:00	Consistent Estimation in Partially Linear Models with Correlated Observations
-	Liangdong Fan*, Cidambi Srinivasan and Richard Charnigo, University of Kentucky
2:15	Multivariate Mean Estimation Under Efficient Sampling Designs
	Daniel F. Linder, Haresh D. Rochani*, Hani M. Samawi and Viral V. Panchal, Georgia Southern University
2:30	Global Rank Tests for Multiple Ordinal and Failure Outcomes
-	Ritesh Ramchandani*, Harvard School of Public Health David A. Schoenfeld and Dianne M. Finkelstein, Massachusetts General Hospital
2:45	Envelope Models for Efficient Multivariate Binary Regression

3:00	A Geometric Perspective on the Powers of Principal Component Association Tests in Multiple Phenotype Studies
	Zhonghua Liu* and Xihong Lin, Harvard University
3:15	Multilevel Matrix-Variate Analysis and its Application to Long-Term Remote Patient Monitoring
	Lei Huang*, Johns Hopkins University Tamara Harris, National Institute of Aging, National Institutes of Health Mathew Maurer and Philip Green, Columbia University Medical Center Andrada Ivanescu, Montclair State University Vadim Zipunnikov, Johns Hopkins University
53	ORAL POSTERS: Clinical Trials
00.	Sponsor: ENAR
	Chair: Bradley P. Carlin, University of Minnesota
53a.	INVITED ORAL POSTER:
	Adaptive Platform Trials: The Future of Clinical Research
-	Donald A. Berry*, University of Texas MD Anderson Cancer Center
53b.	INVITED ORAL POSTER: Statistical Design and Issues in a Scientific Preakthrough Trial for HIV Prevention
	Ving Qing Chen* Fred Hutchinson Cancer Research Center
530	Estimation of Dosage Frequency of Pre-Exposure Pronhylaxis Needed to Protect
000.	Against HIV Infection
_	Claire F. Ruberman*, Johns Hopkins University
53d.	A Mixture of Mixed Logistic Regression Model for Dynamic Treatment Regime with Application to Prostate Cancer Trial
_	Bing Yu*, Bruce Craig and Yu Zhu, Purdue University
53e.	Understanding the Operating Characteristics of Different Bayesian Adaptive Alloca- tions in Two Arm Confirmatory Trial with A Dichotomous Outcome
_	Yunyun Jiang*, Wenle Zhao and Valerie L. Durkalski, Medical University of South Carolina
53f.	Using Event Counts in Phase I Clinical Trials
-	Daniel G. Muenz*, Thomas M. Braun, Jeremy M. G. Taylor, University of Michigan
53g.	Meta-Analysis of Clinical Trials with Sparse Binary Outcomes Using Zero-Inflated Binomial (ZIB) Models
-	Cheng Dong*, University of Missouri Yueqin Zhao and Ram Tiwari, U.S. Food and Drug Administration
53h.	Response Adaptive Randomization Using Surrogate and Primary Endpoints
-	Hui Wang* and Nitai Mukhopadhyay, Virginia Commonwealth University
53i.	Efficient Double Robust Estimation for Two-Stage Dynamic Treatment Regimes
-	Andrew S. Topp*, Geoff S. Johnson and Abdus S. Wahed, University of Pittsburgh
53j.	Choosing Covariates for Adjustment in Non-Inferiority Trials Based on Influence and Disparity
_	Katherine S. Nicholas*, Viswanathan Ramakrishnan and Valerie L. Durkalski-Mauldin, Medical University of South Carolina
53k.	Bayesian Modeling and Prediction of Accrual Using Gaussian Process
-	Yi Deng*, Qing He and Qi Long, Emory University
53I.	Stepped Wedge Cluster Randomized Controlled Trials with Two Layers of Clustering: Designs and Comparisons of Power
	Ranran Dong* and Abigail Shoben, The Ohio State University

3:30 pm - 3:45 pm Refreshment Break with Our Exhibitors

3:45 pm - 5:30 pm Oral Posters & Presentations

54. New Statistical Methods for Imaging Genetics Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Imaging, ASA Statistics in Genomics and Genetics Section Organizer & Chair: Jianhua Hu, University of Texas MD Anderson Cancer Center

- 3:45 Testing for Association Between Genetic Variants and Brain Networks Junghi Kim and Wei Pan*, University of Minnesota
- 4:10 Integrating Genomic and Imaging Data: An Atomic Approach Debashis Ghosh*, Colorado School of Public Health
- 4:35 Joint Mediation Analysis of Imaging and Genetic Data in Genetic Association Studies of Complex Diseases

Hongtu Zhu*, University of North Carolina, Chapel Hill

5:00 Heritability-based Prioritization of Structural Neuroimaging Phenotypes

Tian Ge*, Harvard Medical School Thomas E. Nichols, University of Warwick Martin Reuter, Harvard Medical School Anderson M. Winkler, University of Oxford Avram J. Holmes, Yale University Phil H. Lee and Joshua L. Roffman, Harvard Medical School Randy L. Buckner, Harvard University Jordan W. Smoller and Mert R. Sabuncu, Harvard Medical School

5.25	Floor	Discussion
0.20	FIUUI	DISCUSSION

55. Recent Advances in Adaptive Model-Based Design of Clinical Trials Sponsors: ENAR, ASA Biopharmaceutical Section Organizer & Chair: Sergei Leonov, ICON Clinical Research

- 3:45 Adaptive Dose Escalation Methods in Phase I Oncology Trials: A Case Study Inna Perevozskaya*, Roberto Bugarini and Mani Lakshminarayanan, Pfizer Inc.
- 4:15 Early-phase Design for a Combination of Targeted Therapies in Oncology Nolan A. Wages*, Craig A. Portell and Gina R. Petroni, University of Virginia
- 4:45 Inference in Experiments with Pilot Data Nancy Flournoy*, University of Missouri

5:15 Discussant:

Valerii Fedorov, ICON Clinical Research

56. Statistical Methods for Accelerometry Data: Physical Activity and Health Outcomes Sponsor: ENAR Organizer: Jaroslaw Harezlak, Indiana University

Chair: Jacek Urbanek, Johns Hopkins Bloomberg School of Public Health

3:45 Quantifying Physical Activity in Mid-to-Late Life

Jennifer A. Schrack* and Vadim Zipunnikov, Johns Hopkins University Luo Xiao, North Carolina State University Ciprian Crainiceanu, Johns Hopkins University Luigi Ferrucci, National Institute on Aging, National Institutes of Health

4.10	Multilaval Madala for Analysia of Astigranby Data
4.10	
	Vacim Zipunnikov [*] , Johns Hopkins University
	Junrui Di, Andrew Leroux and Jacek Urbanek. Johns Hopkins University
4:35	Three-Part Joint Modeling Methods for Complex Functional Data in Physical Activity Studies
	Happhang Lit University of Calgary
	John Staudenmaver. University of Massachusetts
	Tianying Wang and Raymond J. Carroll, Texas A&M University
5:00	Accelerometers, Physical Activity, and Conditional Random Fields
	Evan Ray and John W Staudenmaver*, University of Massachusetts, Amherst
5:25	Floor Discussion
67	Otatistical Matheda in UN//AIDO
J <i>I</i> .	Statistical methods III HIV/AIDS
	Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology
	Organizer & Chair: Michael Hudgens, University of North Carolina, Chapel Hill
3:45	Integration of Dynamic Gene Regulatory Networks for HIV Infection in the Big Data Era
_	Hulin Wu*, University of Texas Health Science Center, Houston
4:05	Estimating the Association of Bivariate Survival Data Through Copula Models: An Application to a Study of AIDS-related Non-Hodgkin's Lymphoma in East Africa
	Pingfu Fu* and Xiaozhen Han, Case Western Reserve University
_	Scot Remick, Mary Babb Randolph Cancer Center
4:25	A Dirichlet Process Mixture Model for Non-Ignorable Dropout
	Camille Marie Moore*, Samantha MaWhinney and Nichole E. Carlson,
_	University of Colorado Denver
4:45	A State Space Framework for Patient-Level Modeling of the HIV Care Cascade using Longitudinal Cohort Data
_	Hana Lee*, Joseph W. Hogan and Becky L. Genberg, Brown University Paula Braitstein, Indiana University
5:05	A Structural Equation Modeling Approach to Understanding the Cardiovascular Effects of Antiretroviral Therapy (ART) Initiation: Results from a Phase III Clinical Trial
	Carlee B. Moser*, Harvard School of Public Health
	Judith S. Currier, University of California, Los Angeles
	Howard N. Hodis and Michael P. Dube. University of Southern California
	Todd T. Brown, Johns Hopkins University School of Medicine
	Grace A. McComsey, Case Western Reserve University School of Medicine
5:25	Floor Discussion
58.	Advances and Challenges in Biomarker Studies
	Sponsors: ENAB, ASA Biometrics
	Organizer & Chair: Zhevu Wang, Johns Hopkins University
3.45	A Paradium for Center Effects in Biomarker Studies
0.10	Kathleen E Kerr* and Allision Meisner University of Washington
4.10	An Efficient Presedure to Combine Dismarkers with Limits of Detection for
4.10	Risk Prediction
	num riemer, National Gancer institute, National Institutes of Health Diego Tomassi Instituto de Matemática Anlicada del Litoral Arcentina
	Efstathia Bura, George Washington University
	Liliana Forzani, Universidad Nacional del Litoral, Argentina
_	

ENAR 2016
Scientific Progra
m Monday
March 7

Validation of Reclassification Measures-the Role of Calibration
Nancy R. Cook*, Brigham and Women's Hospital
Correcting for Over-optimism in Metrics of Prognostic Model Improvement
Megan L. Neely* and Michael J. Pencina, Duke University and Duke Clinical Research Institute
Floor Discussion
Functional Regression Methods and Personalized Medicine
Sponsors: ENAR, ASA Biometrics Section
Organizer & Chair: Ana-Maria Staicu, North Carolina State University
Functional Regression Methods for Densely-Sampled Biomarkers in the ICU
Ciprian Crainiceanu*, Johns Hopkins University
Functional Feature Construction for Personalized Treatment Regimes
Eric B. Laber*, Robert Pehlman and Ana-Maria Staicu, North Carolina State University
Estimation of Optimal Treatment Policies and Marginal Screening of Functional Predictors Ian W. McKeague*, Columbia University
Developing Biomarkers for Brain Lesion Trajectories in Longitudinal MRI
Elizabeth M. Sweeney, Johns Hopkins University
Russell T. Shinohara*, University of Pennsylvania Blake F. Dewey and Matthew K. Schindler
National Institute of Neurological Disorders and Stroke, National Institutes of Health
John Muschelli, Johns Hopkins University
Daniel S. Reich, National Institute of Neurological Disorders and Stroke. National Institutes of Health
Ciprian M. Crainiceanu, Johns Hopkins University
Ani Eloyan, Brown University
Floor Discussion
Bayesian Methods for Large-Scale Non-Guassian Data
Sponsors: IMS, ENAR
Organizer & Chair: Michele Guindani, University of Texas MD Anderson Cancer Center
Bayesian Modeling of Huge Tables and Discrete Data
David B. Dunson*, Duke University
Bayesian Models of High-Dimensional Count Data
Marina Vannucci*, Rice University Michala Guindani University of Taxon MD Anderson Concer Conter
Valid Obstitutional Analysis and Research States in the Second States in
valid Statistical Analyses and Reproducible Science in the Era of High-throughput
GUNIKIBUIED PAPERS: CANCEL ADDIICATIONS
Sponsor: ENAK
Chair: Korrio Noleon, Roeton University
Chair: Kerrie Nelson, Boston University
Chair: Kerrie Nelson, Boston University P53-Based Strategy to Reduce Hematological Toxicity of Chemotherapy: A Pilot Study Chul S. Ha. Joel Michalek*, Pieberd Elledge, Kevin P. Kelley, Sutheker Consective
Chair: Kerrie Nelson, Boston University P53-Based Strategy to Reduce Hematological Toxicity of Chemotherapy: A Pilot Study Chul S. Ha, Joel Michalek*, Richard Elledge, Kevin R. Kelley, Suthakar Ganapathy, Su Hang, Carol A. Jenkins, Athanassios Argiris, Ronan Swords and Tony Y. Eng, University of Texas Health Science Center, San Antonio
Chair: Kerrie Nelson, Boston University P53-Based Strategy to Reduce Hematological Toxicity of Chemotherapy: A Pilot Study Chul S. Ha, Joel Michalek*, Richard Elledge, Kevin R. Kelley, Suthakar Ganapathy, Su Hang, Carol A. Jenkins, Athanassios Argiris, Ronan Swords and Tony Y. Eng, University of Texas Health Science Center, San Antonio Using IMRE and ANOVA to Select MicroRNAs for Predicting Prostate Cancer Recurrence

ENAR 2016 Scientific Program Monday March	
ENAR 2016 Scientific Program Monday	March
ENAR 2016 Scientific Program	Monday
ENAR 2016 Scient	ific Program
ENAR 2016	Scienti
	ENAR 2016

4:15	Implementation of a 2-Stage Crossover Correction in Analysis of Overall Survival (OS): An Example in Oncology
	Ruifeng Xu*, Jingshu Wang and James M. Pellissier, Merck & Co., Inc.
4:30	Modeling Multiple Primary Cancers Over Time Using Non-Homogeneous Poisson Process
	Jialu Li*, University of Texas MD Anderson Cancer Center Seung Jun Shin, Korea University Wenyi Wang, University of Texas MD Anderson Cancer Center
4:45	Assessing Intra-Tumor Heterogeneity and Tracking Longitudinal and Spatial Clonal Evolution by Next-Generation Sequencing
_	Yuchao Jiang*, Andy J. Minn and Nancy R. Zhang, University of Pennsylvania
5:00	Pathway-Based Differential Network Analysis in Cancer
_	M in Jin Ha *, Veerabhadran Baladandayuthapani and Kim-Anh Do , University of Texas MD Anderson Cancer Center
5:15	Cell Type-Specific Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration Using Expression Data
	Zeya Wang*, Rice University Jeffrey S. Morris, University of Texas MD Anderson Cancer Center Jaeil Ahn, Georgetown University Bo Li, Harvard University
	Wei Lu, Ximing Tang and Ignacio I. Wistuba, University of Texas MD Anderson Cancer Center Chris C. Holmes, University of Oxford Wenyi Wang, University of Texas MD Anderson Cancer Center
62 .	CONTRIBUTED PAPERS: Heterogeneous Treatment Effects Sponsor: ENAR
	Chair: David Wheeler, Virginia Commonwealth University
3:45	On Clinical Trials with a High Placebo Response Rate
-	George Chi and Pilar Lim*, Janssen Research & Development, LLC
4:00	Using IMRE and Dual KS to Select MicroRNAs for Predicting Prostate Cancer Recurrence Yarong Yang* and Qi Wang, North Dakota State University
4:15	Estimating Treatment Effect in Time to Relapse When Patients Switch Treatment Miao Lu*, University of Virginia Jian Han, Genentech, Inc.
4:30	Inference on Subgroups and All-Comers Cognizant of Logical Relationships Among Efficacy Parameters
_	Szu-Yu Tang*, Ventana Medical Systems, Inc. (Roche Group) Yi Liu, Millennium: The Takeda Oncology Company Jason Hsu, Eli Lilly & Company and The Ohio State University
4:45	Logical Inference on Treatment Efficacy in Subgroups and Their Mixtures
	Ying Ding*, University of Pittsburgh Hui-Min Lin, Takeda Pharmaceuticals Jason C. Hsu, Eli Lilly & Company and The Ohio State University
5:00	Confident Effect of a SNP on the Efficacy of a Drug
_	Jason C. Hsu*, Eli Lilly & Company and The Ohio State University Ying Ding, University of Pittsburgh Ying Grace Li and Stephen J. Ruberg, Eli Lilly & Company

5:15	A Predictive Enrichment Procedure to Identify Potential Responders to a New Therapy for Randomized, Comparative Controlled Clinical Studies Junlong Li, Harvard University Lihui Zhao*, Northwestern University Lu Tian, Stanford University Tianxi Cai, Harvard University Brian Claggett, Brigham and Women's Hospital Andrea Callegaro, Benjamin Dizier, Bart Spiessens and Fernando Ulloa-Montoya, GlaxoSmithKline Vaccines L. J. Wei, Harvard University
63.	CONTRIBUTED PAPERS: High Dimensional Data Applications Sponsor: ENAR Chair: Quanquan Gu, University of Virginia
3:45	Linear Shrinkage Revisited: Positive-Definite Modification of Large-dimensional Covariance Matrix Estimators with Applications to Rehabilitative Speech Treatment of Patients with Parkinson's Disease
-	Young-Geun Choi*^ and Johan Lim, Seoul National University
4:00	Multivariate Test for High Dimensional Compositional Changes in Paired Microbiome Studies
-	Ni Zhao*, Xiang Zhan and Michael Wu, Fred Hutchinson Cancer Research Center
4:15	Kernel-Based Nonparametric Testing in High-Dimensional Data with Applications to Gene Set Analysis
-	Tao He*, San Francisco State University Ping-Shou Zhong, Yuehua Cui and Vidyadhar Mandrekar, Michigan State University
4:30	Covariance Enhanced Screening for Ultrahigh-Dimensional Classification
-	Yanming Li*, Kevin Ke, Ji Zhu and Yi Li, University of Michigan
4:45	Dissecting the Gene-Environment Interactions: A Robust Penalization Approach Accounting for Hierarchical Structures
	Cen Wu*, Kansas State University and Yale University Yu Jiang, University of Memphis Shuangge Ma, Yale University
5:00	Do-Over: Replicates in High Dimensions, with Applications to Latent Variable Graphical Models
	Kean Ming Tan* and Yang Ning, Princeton University Daniela Witten, University of Washington Han Liu, Princeton University
5:15	Sparse Linear Discriminant Analysis in Structured Covariates Space
	Sandra Safo* and Qi Long, Emory University

ENAR 2016 Scientific Program Monday March

March
Monday
cientific Program
ENAR 2016 St
ENAR 2016 Scie

64.	CONTRIBUTED PAPERS: Machine Learning Sponsor: ENAR	
	Chair: Haresh Rochani, Georgia Southern University	
3:45	3:45 Lagged Kernel Machine Regression for Identifying Time Windows of Susceptibility Complex Metal Mixtures	
_	Shelley H. Liu*, Harvard University Jennifer F. Bobb and Kyu Ha Lee, Harvard School of Public Health Chris Gennings, Mount Sinai Hospital Birgit Claus Henn, Boston University School of Public Health Robert O. Wright, Mount Sinai Hospital Lourdes Schnaas and Martha Tellez Rojo, Instituto Nacional De Salud Publica, Mexico Manish Arora, Mount Sinai Hospital Brent Coull, Harvard School of Public Health	
4:00	A Group-Specific Recommender System	
_	Xuan Bi* and Annie Qu, University of Illinois, Urbana-Champaign Junhui Wang, City University of Hong Kong Xiaotong Shen, University of Minnesota	
4:15	A General Unimodal Null Distribution with Applications to Cluster Significance Testing	
	Erika Helgeson and Eric Bair*, University of North Carolina, Chapel Hill	
4:30	Random Forests: How a Chance Driven Learning Machine Does So Spectacularly Well Dan Steinberg*, Salford Systems Adele Cutler, Utah State University	
4.45	Robust Learning for Optimal Treatment Decision with NP-Dimensionality	
	Chengchun Shi*, Rui Song and Wenbin Lu, North Carolina State University	
5:00	Region Based Mediation Test of DNA Methylation Using Kernel Machine Regression Jincheng Shen* and Xihong Lin, Harvard School of Public Health	
5:15	Adaptive Contrast Weighted Learning for Multi-Stage Multi-Treatment Decision-Making Yebin Tao*^ and Lu Wang, University of Michigan	
65.	CONTRIBUTED PAPERS: Next Generation Sequencing Sponsor: ENAR Chair: Yaqun Wang, Rutgers University	
3:45	Shrinkage of Dispersion Parameters in the Binomial Family, with Application to Differential Exon Skipping	
-	Sean Ruddy*, Marla Johnson and Elizabeth Purdom, University of California, Berkeley	
4:00	Accounting for Stochastic Dropout Events in Detecting Differential Gene Expression Using Single-Cell RNA-Seq Data	
_	Cheng Jia*, Mingyao Li and Nancy Zhang, University of Pennsylvania	
4:15	NEXT-Peak: A Per-Base Regression Model for ChIP-Seq Peak Calling	
_	Nak-Kyeong Kim*, Virginia Commonwealth University	
4:30	Gene-Set Analysis Via Combining P-Values in RNA-Seq Data	
_	Yu-Chung Wei*, Ching-Wei Chang and Nysia I. George, U.S. Food and Drug Administration	
4:45	A Model for Paired-Multinomial Data and its Application to Analysis of Data on a Taxonomic Tree	
-	Pixu Shi* and Hongzhe Li, University of Pennsylvania	
5:00	A Novel Normalization Method for Time Series Metagenomic Count Data	
	Lingling An*, Zhenqiang Lu, Meng Lu and Dan Luo, University of Arizona	

5:15	Homology Cluster Differential Expression Analysis for Interspecies mRNA-Seq Experiments
	Jonathan A. Gelfond*, University of Texas Health Science Center, San Antonio
	Joseph G. Ibrahim, University of North Carolina, Chapel Hill
	Ming-Hiu Gnen, University of Connecticut Sun Wei, Ered Hutchinson Cancer Center
	Kaitlyn Lewis. University of Texas Health Science Center. San Antonio
	Sean Kinahan and Matthew Hibbs, Trinity University
	Rochelle Buffenstein, Calico Labs
66 .	ORAL POSTERS: Genomics
	Sponsor: ENAR
	Chair: Tanya Garcia, Texas A&M University
66a.	INVITED ORAL POSTER:
	Statistical Methods for Single-Cell RNA-Seq
	Rhonda Bacher and Jeea Choi, University of Wisconsin
	Ning Leng Li-Fang Chu, James A. Thomson and Bon Stewart
	Morgridge Institute for Research
_	Christina Kendziorski*, University of Wisconsin
66b.	INVITED ORAL POSTER:
	The Widespread and Critical Impact of Systematic Bias and Batch Effects in Single- Cell RNA-Seq Data
	Stephanie C. Hicks and Minaxiana Tena. Harvard University
	Rafael A. Irizarry*, Dana-Farber Cancer Institute and Harvard University
66c.	Change in Variance of IGF2 Gene Methylation is Associated with Three Metabolites
	Emily C. Hector*, Jaclyn M. Goodrich, Lu Tang, Wei Peng and Dana C. Dolinoy,
	University of Michigan Adriana Marcada Carcia, National Institute of Dublic Health, Mavies
	Howard Hu. University of Toronto
	Martha Maria Tellez-Rojo, National Institute of Public Health, Mexico
	Karen E. Peterson, University of Michigan and Harvard School of Public Health
-	Peter X.K. Song, University of Michigan
66d.	Prioritizing Genes Based on Bayes Factor
	Hongyan Xu* and Fengjiao Hu, Georgia Regents University
	Varghese George, Georgia Regents University
- 66e.	RefCNV: Identification of Gene-Based Copy Number Variants Using Whole
	Exome Sequencing
	Lun-Ching Chang*, National Cancer Institute, National Institutes of Health
	Biswajit Das, Chih-Jian Lih, Corrine Camalier and Paul McGregor,
	Fric Polley National Cancer Institute National Institutes of Health
- 66f	A Generalized Eurotional Model for Association Analysis of Family-Based
001.	Sequencing Data
	Sneha Jadhav* and Qing Lu, Michigan State University
- 66g.	Bayesian Hierarchical Modeling and Shrinkage Priors for GWAS
	LiJin Joo* and Cheongeun Oh, New York University
66h	Statistical Methods for Compositional Data Analysis with Application in Metagenomics
	Hongmei Jiang*. Northwestern University

_	
66i .	Pathway-based Integrative Bayesian Modeling of Multi-platform Genomics Data
	Elizabeth J. McGuffey*, United States Naval Academy
	Jeffrey S. Morris and Ganiraju C. Manyam, University of Texas MD Anderson Cancer Center
	Kaymond J. Carroll, Texas A&M University
	Veerabilatian Baladandayuunapani, oniversity on rexas with Anderson Gancer Center
66J.	Incorporating Functional Information Into SNP-Based Phenotype Prediction
-	Yue-Ming Chen* and Peng Wei, University of Texas School of Public Health, Houston
66k.	Detection of Genetic Interactions Through Meta-Analysis and Effect Size Heterogeneity
	Yulun Liu*, University of Texas MD Anderson Cancer Center
	Yong Chen, University of Pennsylvania School of Medicine
-	Paul Scheet, University of Texas MD Anderson Cancer Center
66 I.	Assessing Mitochondrial DNA Variation and Copy Number Using Tailored Sequencing Analysis Tools
	Jun Ding*, National Institute on Aging, National Institutes of Health
	Carlo Sidore and Francesco Cucca, Istituto di Ricerca Genetica e Biomedica, Consiglio
	Nazionale delle Ricerche, Italy
	Goncalo R. Abecasis, University of Michigan David Sablassinger, National Institute on Aging, National Institutes of Health
-	David Schlessinger, National Institute on Aging, National Institutes of Fleatin
66m.	Bayesian Latent Hierarchical Model for Transcriptomic Meta-Analysis to Detect Bio- markers with Clustered Meta-Patterns of Differential Expression Signals
	Zhiguang Huo, University of Pittsburgh
	Chi Song*, The Ohio State University
	George Tseng, University of Pittsburgh
vehoouT	March 8
Tucouay	

8:30 - 10:15 am Oral Presentations

67.	New Statistical Developments for Emerging Challenges with Complex Data Structures in Observational Studies Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology Organizer & Chair: Lu Wang, University of Michigan
8:30 Joint Modeling of Longitudinal Health Predictors and Cross-sectional Health O comes via Mean and Variance Trajectories	
	Michael R. Elliott*, University of Michigan Bei Jiang, University of Alberta Naisyn Wang, University of Michigan Mary Sammel, University of Pennsylvania
8:55	Spatial Measurement Error and Correction by Spatial SIMEX in Linear Regression Models when Using Predicted Air Pollution Exposures
	Stacey E. Alexeeff, Kaiser Permanente Raymond J. Carroll, Texas A&M University Brent A. Coull*, Harvard University
9:20	Intrinsic Efficiency and Multiple Robustness in Longitudinal Data Analysis with Dropout
_	Peisong Han*, University of Waterloo
9:45	Multiple Robust Fitting of a Log-linear Model
_	Andrea Rotnitzky*, Di Tella University Thomas Richardson, University of Washington, Seattle
10:10	Floor Discussion

68 .	Statistical Innovations of Massive Genomic Data Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetics Section Organizers: Yuping Zhang, University of Connecticut and Zhaohui (Steve) Qin, Emory University Chair: Zhaohui (Steve) Qin, Emory University
8:30	The Generalized Higher Criticism for Testing SNP-set Effects in Genetic Association Studies Ian Barnett, Harvard School of Public Health Rajarshi Mukherjee, Stanford University Xihong Lin*, Harvard School of Public Health
8:55	Leveraging Algorithms for Logistic Regression with Massive Data Ping Ma*, University of Georgia
9:20	Statistical Modeling of High-Throughput RNA Structure Probing Data Zhengqing Ouyang*, The Jackson Laboratory for Genomic Medicine
9:45	Expansion of Biological Pathways by Integrating Enormous mRNA Expression Datasets Yang Li and Jun Liu*, Harvard University Vamsi Mootha, Harvard Medical School
10:10	Floor Discussion
69 .	Policy Implications of Scientific Reproducibility - A Panel Discussion Sponsor: ENAR Organizer & Chair: Michelle Schwalbe, National Research Council
8:30 _	Discussants: Constantine Gatsonis, Brown University Marcia McNutt, Science (Editor-in-Chief) Lawrence Tabak, National Institutes of Health (Principal Deputy Director) Steven Goodman, Stanford University
10:00	Floor Discussion
70.	Multivariate Models for Spatially Correlated Data Sponsors: ENAR, ASA Bayesian Statistical Science Section, ASA Biometrics Section, ASA Section on Statistics and the Environment Organizer & Chair: Mahlet Tadesse, Georgetown University
8:30	Bayesian Matrix Models for Multivariate Disease Mapping Miguel A. Martinez-Beneito, Public Health Research Center of Valencia Paloma Botella-Rocamora, CEU Cardinal Herrera University, Spain Sudipto Banerjee*, University of California, Los Angeles
8:55	Multivariate Generalized Linear Models for Space-Time Disease Mapping Marie Denis* and Sabastien Tisne, CIRAD, France Indra Syahputra, PT Socfindo, Indonesia Hubert de Franqueville and Benoit Cochard, PalmElit SAS
9:20	Multivariate Latent Structure in Bayesian Spatio-temporal Health Models
-	Andrew B. Lawson and Rachel Carroll*, Medical University of South Carolina
9:45	A Hierarchical Bayesian Model for Prediction of Multivariate Non-Gaussian Random Fields Frederic Mortier*, CIRAD, France Pierrette Chagneau, INSA de Rennes, France Nicolas Picard, Food and Agriculture Organization of the United Nations
10:10	Floor Discussion

71.	Methods for Comparative Effectiveness Research Using Electronic Health Records
	Sponsors: ENAR, ASA Biometrics Section, ASA Statistical Learning and Data Mining Section Organizer: Yingqi Zhao, University of Wisconsin, Madison Chair: Chaeryon Kang, University of Pittsburgh
8:30	Comparing Comparative Effectiveness Studies Using Electronic Health Record (EHR) Data Ruth Etzioni*, Fred Hutchinson Cancer Research Center Lurdes Inoue, University of Washington
8:55	Comparative Effectiveness of Dynamic Treatment Strategies: The Renaissance of the Parametric g-Formula Miguel Hernan*, Harvard University
9:20	Electronic Health Records as Evidence Generation Tools for Medical Decision Making Marianthi Markatou*, University at Buffalo
9:45	Methods for Misclassified Time to Event Outcomes in Studies Using EHR-derived Endpoints
	Rebecca A. Hubbard*, University of Pennsylvania Weiwei Zhu and Jessica Chubak, Group Health Research Institute
10:10	Floor Discussion
72.	Missing Data Issues in Meta-Analysis with Individual Participant Data Sponsors: ENAR, ASA Bayesian Statistical Science Section, ASA Biometrics Section, ASA Survey Research and Methodology Section
	Organizer & Chair: Yajuan Si, University of Wisconsin, Madison
8:30	Missing Confounder Data in Observational Meta-Analysis with Systematically Missing Data
_	Ian R. White*, MRC Biostatistics Unit, Cambridge, UK Matthieu Resche-Rigon, Universite Paris Diderot
8:55	Allowing for Uncertainty Due to Missing Outcome Data in Pairwise and Network Meta-analysis
	Dimitris Mavridis*, University of Ioannina, Greece Ian R. White, MRC Biostatistics Unit, Cambridge, UK Julian PT. Higgins, University of Bristol, UK Andrea Cipriani, University of Oxford, UK Anna Chaimani and Georgia Salanti, University of Ioannina, Greece
9:20	Multiple Imputation for Harmonizing Longitudinal Non-Commensurate Measures in Individual Participant Data Meta-Analysis
	Juned Siddique*, Northwestern University Jerome P. Reiter, Duke University Ahnalee Brincks, University of Miami Robert D. Gibbons, University of Chicago Catherine M. Crespi, University of California, Los Angeles C. H. Brown, Northwestern University
9:45	Bayesian Inference for Multivariate Meta-regression with a Partially Observed Within- Study Sample Covariance Matrix
	 Hui Yao, Ernst & Young Sungduk Kim*, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Ming-Hui Chen, University of Connecticut Joseph G. Ibrahim, University of North Carolina, Chapel Hill Arvind Shah and Jianxin Lin, Merck
10:10	Floor Discussion

73.	Modeling High Dimensional Space-Time Data with Applications to Neuroimaging Sponsor: IMS, ENAR Organizer: Hernando Ombao, University of California, Irvine Chair: Ciprian Crainiceanu, Johns Hopkins University
8:30	Estimating Information Flow in Large Brain Networks via Convex Optimization Xi Luo* and Yi Zhao, Brown University
8:55	A Scalable Multi-resolution Model for Activation and Brain Connectivity in fMRI Data Stefano Castruccio*, Newcastle University Hernando Ombao, University of California, Irvine Marc Genton, King Abdullah University of Science and Technology, Saudi Arabia
9:20	A Novel Multiscale Methodology for Multimodal Data Integration John Aston and Jean-Marc Freyermuth*, University of Cambridge Hernando Ombao, University of California, Irvine
9:45	Robust Clustering Methods for Time-Evolving Brain Signals Tianbo Chen and Ying Sun*, King Abdullah University of Science and Technology, Saudi Arabia Hernando Ombao, University of California, Irvine Carolina Euan, Centro de Investigación en Matemáticas, Mexico
10:10	Floor Discussion
74.	CONTRIBUTED PAPERS: Bayesian Hierarchical Modeling Sponsor: ENAR Chair: Sally Thurston, University of Rochester
8:30	Bayesian Mixed-Effects Varying-Coefficient Joint Models for Skewed Longitudinal Data with Application to AIDS Clinical Studies Tao Lu*, State University of New York, Albany
8:45	Modelling Pulsatile Hormone Associations with Cox Cluster Models Huayu Liu*, Nichole E. Carlson and Alex J. Polotsky, University of Colorado, Anschutz Medical Campus
9:00	A Bayesian Formulation for Capturing Population Heterogeneity Junxian Geng* and Elizabeth Slate, Florida State University
9:15	Bayesian Hierarchical Modeling to Determine Substate Reporting Areas Tianyi Cai* and Francesca Dominici, Harvard School of Public Health Alan Zaslavsky, Harvard Medical School
9:30	Spatial-Temporal Survival Analysis on Prostate Cancer in Pennsylvania Using Bayesian Accelerated Failure Time Models Zheng Li* and Ming Wang, Penn State College of Medicine Stephen A. Matthews, Penn State Hershey Cancer Institute Khaled Iskandarani, Penn State College of Medicine Yimei Li University of Pennsylvania
	Vernon M. Chinchilli, Penn State College of Medicine
9:45	Hierarchical Multivariate Space-Time Methods for Modeling Counts with an Application to Stroke Mortality Data
	Harrison Quick*, Centers for Disease Control and Prevention Lance A. Waller, Emory University Michele Casper, Centers for Disease Control and Prevention
10:00	Floor Discussion

Tuesday March 8	Invoudy Midicii o	Tunnday Marah 0
Scientific Program		Colontific Drogram
ENAR 2016		FNAD 0010

75.	CONTRIBUTED PAPERS: Epidemiologic Methods Sponsor: ENAR Chair: Ran Tao, University of North Carolina, Chapel Hill
8:30	Accounting for Informed Presence in the Analysis of Electronic Health Records
	Benjamin A. Goldstein* and Nrupen Bhavsar, Duke University Matthew Phelan, Duke Clinical Research Institute Michael J. Pencina, Duke University
8:45	Spatial Pattern ing of Diabetes in Durham, North Carolina: A Bayesian Analysis of Associations with Individual and Neighborhood Characteristics
_	Mercedes A. Bravo* and Rebecca Anthopolos , Children's Environmental Health Initiative, University of Michigan Marie Lynn Miranda , Rice University
9:00	The Associations of Drugs with Acute Myocardial Infarction: Bias Correction, Global Profiling and Inference on Individual Drug
	Changyu Shen, Xiaochun Li and Jia Zhan*, Indiana University School of Medicine and School of Public Health
9:15	Approximate Bayesian Computation for Compartmental Epidemic Models - Methods and Software
	Grant D. Brown*, University of Iowa Aaron T. Porter, Colorado School of Mines Jacob J. Oleson, University of Iowa
9:30	Proportional Hazards Regression for Interval-Censored Failure Time Data in Case- Cohort Studies
-	Qingning Zhou*, Haibo Zhou and Jianwen Cai, University of North Carolina, Chapel Hill
9:45	Bias and Artifact Trade-Off in Modeling Temporal Trend of Archived Data with Applications to Public Health Studies, Demography, Marketing Research and Sociology
	Martina Fu, Stanford University David Todem, Michigan State University Wenjiang Fu*, University of Houston Shuangge Ma, Yale University
10:00	Floor Discussion
76.	CONTRIBUTED PAPERS: GWAS: Applications Sponsor: ENAR Chair: Naomi Brownstein, Florida State University
8:30	Shrinkage-Based Genome Wide Association Analyses Based on Sparse Versus Gaussian Priors
	Chunyu Chen*, Juan P. Steibel and Robert J. Tempelman, Michigan State University
8:45	An Exposure-Weighted Score Test for Genetic Associations Integrating Environmental Risk Factors
	Summer S. Han*, Stanford University Philip S. Rosenberg, National Cancer Institute, National Institutes of Health Arpita Ghosh, Public Health Foundation of India Maria Teresa Landi and Neil E. Caporaso, National Cancer Institute, National Institutes of Health Nilanjan Chatterjee, Johns Hopkins University
9:00	Detecting Shared Genetic Variants Between Two Diseases with Dependent SNPs
	Wanjie Wang*, Tony Cai, and Hongzhe Li, University of Pennsylvania

A
B
20
16
S
B
E.
fic
Pr
D O
a
B
Tu
DSE
ay
\leq
ar
Ch
$\boldsymbol{\infty}$

9:15	Detection of Signal Regions in Whole Genome Association Studies
_	Zilin Li*, Tsinghua University and Harvard School of Public Health Xihong Lin, Harvard School of Public Helath
9:30	A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits
_	 Chi-Yang Chiu* and Ruzong Fan, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Jeesun Jung, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Daniel E. Weeks, University of Pittsburgh Alexander F. Wilson, National Human Genome Research Institute, National Institutes of Health Christopher I. Amos, Dartmouth Medical School Joan E. Bailey-Wilson, National Human Genome Research Institute, National Institutes of Health James L. Mills, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
9:45	The Correction of Cell-Type Composition in Epigenome-Wide Association Studies Shaoyu Li*, University of North Carolina, Charlotte
10:00	Floor Discussion
77.	CONTRIBUTED PAPERS: Missing Data Sponsor: ENAR
0.20	Estimating the Marginal Effect of Interventions to Reduce Spread of Communicable
0:30	Diseases: What Can be Gained from Contact Network Information?
_	Melanie Prague*, Patrick Staples, JP Onnela, Eric Tchetgen Tchetgen and Victor De Gruttola, Harvard School of Public Health
8:45	A Double Robust Semiparametric Method to Account for Missing Confounder Data
_	Katherine L. Evans*, Harvard University Eric Tchetgen Tchetgen, Harvard School of Public Health
9:00	On Inverse Probability Weighting for Nonmonotone Missing at Random Data
_	BaoLuo Sun** and Eric Tchetgen Tchetgen, Harvard School of Public Health
9:15	Maximum Likelihood Estimation in a Semicontinuous Regression Model with a Covariate Subject to a Detection Limit
-	Paul W. Bernhardt*, Villanova University
9:30	Feasibility of Variable-By-Variable Imputation in Clustered Data with Multiple Membership
-	Iugba Akkaya-Hocagii* and Recai M. Yucei, State University of New York, Albany
9:45	Mixed-Effects Models for Multivariate Clustered Data with Nonighorable Missing Outcomes
_	Jiebiao Wang*, University of Chicago Pei Wang, Icahn Medical School at Mount Sinai Lin S. Chen, University of Chicago
10:00	A Simple Method of Estimating the Odds Ratio with Incomplete Data in 1:N Matched Case-Control Studies
	Chan Jin and Stephen W. Looney*, Augusta University

Tuesday March 8
scientific Program
ENAR 2016 S

78 .	CONTRIBUTED PAPERS: Semi-Parametric and Non-Parametric Survival Sponsor: ENAR
	Chair: Thomas Murray, University of Texas MD Anderson Cancer Center
8:30	Regression Analysis of Current Status Data with Generalized Odds-Rate Hazards Models
-	Bin Yao* and Lianming Wang, University of South Carolina
8:45	A Joint Model of Cancer Incidence, Metastasis, and Mortality Qui Tran*, Kelley M. Kidwell and Alex Tsodikov, University of Michigan
9:00	Proportional Subdistribution Hazards Regression with Interval-Censored Competing Risks Data
_	Yi Ren*, U.S. Food and Drug Administration Chung-Chou Chang, University of Pittsburgh Ruosha Li, University of Texas Health Science Center, Houston
9:15	Tuning Parameter Selection in Cox Proportional Hazards Model with a Diverging Number of Parameters
	Ai Ni*, Memorial Sloan Kettering Cancer Center Jianwen Cai, University of North Carolina, Chapel Hill
9:30	Permutation Test for General Dependent Truncation
	Sy Han Chiou*, Harvard School of Public Health Jing Qian, University of Massachusetts, Amherst Rebecca Betensky, Harvard School of Public Health
9:45	Semiparametric Modeling and Analysis of Paired Longitudinal Method Comparison Data Lasitha N. Rathnayake* and Pankaj K. Choudhary, University of Texas, Dallas
10:00	Semiparametric Estimation of the Accelerated Failure Time Model with Partly Interval- Censored Data
	Fei Gao*, Donglin Zeng and Danyu Lin, University of North Carolina, Chapel Hill
79.	CONTRIBUTED PAPERS: Study Design Sponsor: ENAR Chair: Xavier De Luna, Umeå University
8:30	Value-Driven Optimization of Study Design and Go/No Go Decision at POC Stage: A Program Level Simulation Approach
	Masanori Ito*, Astellas Pharma Global Development Inc. Nitin Patel, Cytel Inc.
8:45	A Revisit to Two-Way Factorial ANOVA for Unbalanced Data Tao Wang*, Medical College of Wisconsin
9:00	Exposure Enriched Case-Control (EECC) Design for the Assessment of Gene- Environment Interaction
	Md Hamidul Huque*, University of Technology Sydney, Australia Raymond J. Carroll, Texas A&M University Nancy Diao and David C. Christiani, Harvard School of Public Health Louise M. Ryan, University of Technology Sydney, Australia
9:15	Sample Size Calculations for Stratified Micro-Randomized Trials in mHealth Walter Dempsey*, Peng Liao and Susan Murphy, University of Michigan
9:30	Compound Criteria for Constructing Efficient and Flexible Designs
-	Luzia A. Hinda , Universidade Estaduar i adiista, Drasii (UNEOF)

9:45	SeqDesign: A Framework for RNA-Seq Genome-Wide Power Calculation and Experimental Design Issues
	Chien-Wei Lin*^, Serena G. Liao and George C. Tseng, University of Pittsburgh
10:00	Statistical Considerations in Designing Precision Study for Optical Coherence Tomography Device
	Haiwen Shi*, U.S. Food and Drug Administration
10:15 - 10:30 am	Refreshment Break with Our Exhibitors
10:30 am - 12:15 pm	Presidential Invited Address
80.	Biostatistics, Biomedical Informatics, and Health Data Science: Research and Training Sponsor: ENAR Organizer & Chair: Jianwen Cai, University of North Carolina, Chapel Hill
10:30	Introduction
10:35	Distinguished Student Paper Awards
10:45	Biostatistics, Biomedical Informatics, and Health Data Science: Research and Training
	Xihong Lin, Ph.D., Chair and Henry Pickering Walcott Professor, Department of Biostatistics, Harvard University
1:45 - 3:30 pm	Oral Presentations
81.	New Developments for Individualized Medical Decision Making in Real World Settings Sponsors: ENAR, ASA Biometrics Section, ASA Mental Health Statistics Section, ASA Statistical Learning and Data Mining Section Organizer: Yuanjia Wang, Columbia University Chair: Bei Jiang, University of Alberta
1:45	Dynamic Systems for Identifying Biomarkers Predicting Landmarks of Disease Degeneration
2.10	Model Validation and Selection in G-estimation of Dynamic Treatment Regimes
2.10	Erica E. M. Moodie*, Michael P. Wallace and David A. Stephens, McGill University
2:35	Learning Optimal Personalized Treatment Rules in Benefit-Risk Analysis
	Yuanjia Wang , Columbia University Haoda Fu , Eli Lilly and Company Donglin Zeng* , University of North Carolina, Chapel Hill
3:00	Building Personalized Treatment Strategy with Binary Outcomes
_	Min Qian*, Columbia University Eric Laber, North Carolina State University
3:25	Floor Discussion

8	2.	Emerging Issues of Competing Ris Sponsors: ENAR, AS, Organizer: Qingxia C Chair: Julie Cong, Bo
1	:45	A Bayesian Cure Ra and Competing Risk Mario de Castro, Un Ming-Hui Chen*, Un Anthony V. D'Amico,
2	:10	Treatment Effect Est Qingxia Chen*, Vand Fan Zhang and Ming Xiuyu Julie Cong, Bo
2	:35	Regression Analysis Idil Yavuz, Dokuz Eyl Ling-Wan Chen, Yu
3	:00	Penalized Variable S Zhixuan Fu and Chir Bingqing Zhou*, Nov
3	:25	Floor Discussion
8	3.	New Development Sponsors: ENAR, AS, Organizers: Wei Che cal Center and Bingsl Chair: Wei Chen, Chi
1	:45	Rare-variant Associa Descent Information Michael P. Epstein*, Glen A. Satten, Cent
2	:10	Searching Rare Varia Xiaofeng Zhu*, Case
2	:35	Gene-Based Associa Linear Mixed Models Yingda Jiang*, Unive Chi-Yang Chiu and F and Human Developm Qi Yan and Wei Cher Children's Hospital of
		Michael B. Gorin, Un Yvette P. Conley and
3	:00	Michael B. Gorin, Un Yvette P. Conley and A Bayesian Framewo Qiang Wei, Rui Chen Yongzhuang Liu, Hai Xiaowei Zhan, Unive Wei Chen, University Bingshan Li*, Vander

82. Emerging Issues in Clinical Trials with Time-to-Event Data in the Presence of Competing Risks

Sponsors: ENAR, ASA Biopharmaceutical Section Organizer: Qingxia Chen, Vanderbilt University Chair: Julie Cong, Boehringer Ingelheim Pharmaceuticals, Inc.

1:45 A Bayesian Cure Rate Frailty Model for Survival Data in Presence of Semi-competing and Competing Risks

Mario de Castro, Universidade de Sao Paulo, Brasil Ming-Hui Chen*, University of Connecticut Anthony V. D'Amico, Harvard University and Brigham and Women's Hospital

- 2:10 Treatment Effect Estimate and Model Diagnostics with Time-Varying Treatment Switching Qingxia Chen*, Vanderbilt University Fan Zhang and Ming-Hui Chen, University of Connecticut Xiuyu Julie Cong, Boehringer Ingelheim Pharmaceuticals, Inc.
- 2:35 Regression Analysis for Cumulative Incidence Function under Two-stage Randomization Idil Yavuz, Dokuz Eylul University, Turkey Ling-Wan Chen, Yu Cheng* and Abdus Wahed, University of Pittsburgh

3:00 Penalized Variable Selection in Competing Risks Regression Zhixuan Fu and Chirag Parikh, Yale University Bingqing Zhou*, Novartis and Yale University

83. New Development of Statistical Methods for Family-Based Sequencing Studies Sponsors: ENAR, ASA Statistics in Genomics and Genetics Organizers: Wei Chen, Children's Hospital of Pittsburgh of the University of Pittsburgh Medi-

cal Center and Bingshan Li, Vanderbilt University Chair: Wei Chen, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center

1:45 Rare-variant Association Testing of Complex Disease in Pedigrees Using Identity-by-Descent Information

Michael P. Epstein*, Emory University School of Medicine Glen A. Satten, Centers for Disease Control and Prevention

- 2:10 Searching Rare Variants under Complex Traits Leveraging on Linkage Evidence Xiaofeng Zhu*, Case Western Reserve University
- 2:35 Gene-Based Association Testing of Dichotomous Traits Using Generalized Functional Linear Mixed Models for Family Data

Yingda Jiang*, University of Pittsburgh Chi-Yang Chiu and Ruzong Fan, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Qi Yan and Wei Chen, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center Michael B. Gorin, University of California, Los Angeles Yvette P. Conley and Daniel E. Weeks, University of Pittsburgh

3:00 A Bayesian Framework for de novo Mutation Calling in Family Sequencing Data Qiang Wei, Rui Chen and Xue Zhong, Vanderbilt University Yongzhuang Liu, Harbin Institute of Technology Xiaowei Zhan, University of Texas Southwestern Wei Chen, University of Pittsburgh Bingshan Li*, Vanderbilt University

3:25 Floor Discussion

luesdav March 8

NAR 2016 Scientific Program

84.	New Developments of Quantile Regression for Complex Data Analysis: Theories and Applications Sponsors: ENAR, ASA Statistics in Genomics and Genetics Organizers: Linglong Kong, University of Alberta and Peisong Han, University of Waterloo Chair: Linglong Kong, University of Alberta
1:45	Partially Linear Additive Quantile Regression in Ultra-high Dimension Ben Sherwood, John Hopkins University Lan Wang*, University of Minnesota
2:10	Model Selection for Quantile Regression with Varying Covariate Effects Qi Zheng, University of Louisville Limin Peng*, Emory University
2:35	Regularized Quantile Regression under Heterogeneous Sparsity with Application to Quantitative Genetic Traits Chad He*, Fred Hutchinson Cancer Research Center Linglong Kong, University of Alberta Yanhua Wang, Beijing Institute of Technology Sijian Wang, University of Wisconsin, Madison Timothy Chan, Memorial Sloan-Kettering Cancer Center Eric Holland, Fred Hutchinson Cancer Research Center
3:00	Some Aspects of Regularization in Quantile Regression Ivan Mizera*, University of Alberta
3:25	Floor Discussion
85.	Curent Developments and Issues for Meta-Analysis Sponsors: ENAR, ASA Biometrics Section, ASA Section on Statistics in Epidemiology Organizer: Yong Chen, University of Texas School of Public Health Chair: Haitao Chu, University of Minnesota
1:45	Some Recent Theoretical Results on Meta-Analysis Danyu Lin*, University of North Carolina, Chapel Hill
2:10	Adaptively Weighted Meta-analysis in-omics Applications Zhiguang Huo, Yongseok Park and George Tseng*, University of Pittsburgh
2:35	Network Meta-Analysis for Diagnostic Accuracy Thomas Trikalinos*, Wei Cheng, Constantine Gatsonis and Christopher Schmid, Brown University
3:00	A Novel Method for Correcting Publication Bias in Multivariate Meta-analysis Yong Chen*, University of Pennsylvania Chuan Hong, University of Texas Health Science Center, Houston Haitao Chu, University of Minnesota
3:25	Floor Discussion
86.	Survival Prediction Models for Medical Decision Making Sponsors: ENAR, ASA Biometrics Section Organizer & Chair: Jing Ning, University of Texas MD Anderson Cancer Center
1:45	Evaluation of Biomarkers for Prediction of Clinical Events: Connection to Information Theory Patrick J. Heagerty*, University of Washington

Tuesday March 8
Scientific Program
ENAR 2016

2:10	Dynamic Prediction of Time-to-Event Distributions
	Xuelin Huang*, University of Texas MD Anderson Cancer Center
	Fangrong Yan, China Pharmaceutical University & University of Texas MD Anderson Cancer Center
	Jing Ning and Ziding Feng, University of Texas MD Anderson Cancer Center
2:35	Robust Learning of Optimal Treatment Regimes for Survival Endpoints
	Runchao Jiang, Facebook
	Wenbin Lu* and Rui Song, North Carolina State University Michael Hudgens and Sonia Nanryaynik, University of North Carolina, Chapel Hill
3.00	An Analytical Framework for Building and Evaluating Landmark Models for Dynamic
0.00	Prediction of Survival Using Longitudinal Data
	Liang Li*, University of Texas MD Anderson Cancer Center
	Sheng Luo, University of Texas Health Science Center, Houston Bo Hu, Cleveland Clinic
	Tom Greene, University of Utah
3:25	Floor Discussion
87 .	Statistical Machine Learning for Big-Bio-Data
	Sponsors: IMS, ENAR
	Organizer & Chair: Genevera Allen, Rice University
1:45	Estimation of Directed Acyclic Graphs using BIC under Path Restrictions
-	George Michailidis*, University of Florida
2:10	Spatially Relating Developmental Transcription Factors Using Drosophila Embryonic Gene Expression Images
	Karl Kumbier*, Siqi Wu and Antony Joseph, University of California, Berkeley
	Lawrence Berkeley National Laboratory
	Bin Yu, University of California, Berkeley
0.05	Erwin Frise, Lawrence Berkeley National Laboratory
2:35	Estimating Faise inclusion kates in Penalized Regression Models
3.00	Toward Personalized Pan-Omic Association Analysis under Complex Structures
5.00	Eric P. Xing*. Carnegie Mellon University
3:15	Floor Discussion
88	CONTRIBUTED DADERS: Causal Inference
00.	Sponsor: ENAR
	Chair: Adam King, California State Polytechnic University, Pomona
1:45	A Cautionary Tale: Mediation Analysis Applied to Censored Survival Data
	Isabel R. Fulcher*, Eric J. Tchetgen Tchetgen and Paige L. Williams, Harvard University
2:00	Simpler Approach for Mediation Analysis for Dichotomous Mediators in Logistic Regression
	Hani Samawi, Jingxian Cai*, Harash Rochani and Daniel Linder, Georgia Southern University
2:15	Propensity Score and Doubly Robust Methods for Estimating the Effect of Treatment
	Jiagi Li* and Nandita Mitra. University of Pennsylvania

2:30	Semiparametric Efficient Estimation of Coarse Structural Nested Mean Models in the Presence of Informative Censoring with Application to the Effect of One-Year of HAART
	Shu Yang* and Judith Lok, Harvard University
2:45	A New Weighted Partial Likelihood Method for Estimating Marginal Structural Hazard Models
	Olli Saarela*, University of Toronto Zhihui Liu, Cancer Care Ontario and University of Toronto
3:00	Is the Double Robust Estimator Really Robust?
_	Xavier de Luna*, Umeå University Eva Cantoni, University of Geneva
3:15	Covariate Balancing in Propensity Score-Based Methods for Observational Studies Adin-Cristian Andrei*, Northwestern University
89.	CONTRIBUTED PAPERS: Functional Data Analysis
	Chair: Adam Ciarleglio, New York University
1:45	Single-Index Models for Function-On-Function Regression
	Guanqun Cao*, Auburn University Lily Wang, Iowa State University
2:00	Multivariate Multiscale Functional Data Analysis
	Andrew N. Potter* and Stewart J. Anderson, University of Pittsburgh
2:15	Ordinal Probit Wavelet-Based Functional Models for eQTL Analysis
	Mark J. Meyer*, Bucknell University Jeffrey S Morris, University of Texas MD Anderson Cancer Center Craig P. Hersh and Jarrett D. Morrow, Brigham and Women's Hospital Christoph Lange and Brent A. Coull, Harvard School of Public Health
2:30	Optimal Design for Sparse Functional Data
	So Young Park* and Luo Xiao, North Carolina State University Jayson Wilbur, Metrum Research Group LLC Ana-Maria Staicu, North Carolina State University
2:45	Detecting Outliers in Images of DNA Molecules Using Functional Data Depth and Morphological Features
	Subhrangshu Nandi*, University of Wisconsin, Madison Alicia Nieto-Reyes, Universidad de Cantabria Chengyue Wu, University of Science and Technology of China Michael A. Newton, University of Wisconsin, Madison
3:00	A Bayesian Wavelet Based Analysis of Longitudinally Observed Skewed Heteroscedastic Response
	Danisha S. Baker*, Eric Chicken, Debajyoti Sinha and Debdeep Pati, Florida State University
3:15	Floor Discussion
90 .	CONTRIBUTED PAPERS: High Dimensional Variable Selection
	Sponsor: ENAR
	Chair: Andy Ni, Memorial Sloan Kettering Cancer Center
1:45	An Efficient Method for Variable Selection in Linear and Nonlinear Models
-	Arnab K. Maity* and Sanjib Basu, Northern Illinois University

esday March 8
Program Tue
Scientific I
ENAR 2016

2:00	Covariance-Insured Screening Methods for Ultrahigh Dimensional Variable Selection
	Kevin He*, Yi Li and Ji Zhu, University of Michigan
	Jiashun Jin, Carnegie Mellon University
	Yanming Li and Jian Kang, University of Michigan Hyokyoung (Grace) Hong, Michigan State University
2:15	A Data-Driven Approach to Conditional Screening of High Dimensional Variables
2.10	Hvokvoung (Grace) Hong* Michigan State University
	Lan Wang, University of Minnesota
_	Xuming He, University of Michigan
2:30	Selection-Assisted Smoothed Partial Regression Estimation and Inference for High- Dimensional Linear Model
_	Zhe Fei*, Yi Li and Ji Zhu, University of Michigan
2:45	On High Dimensional Inference
	Qiang Sun* and Heping Zhang, Yale University
3:00	A New Class of Measures for Testing Independence
	Xiangrong Yin and Qingcong Yuan*, University of Kentucky
3:15	Distributed Inference for High Dimensional Semi-Parametric Elliptical Graphical Models
	Lu Tian*, Pan Xu and Quanquan Gu, University of Virginia
91.	CONTRIBUTED PAPERS: Nonnarametric Methods
	Sponsor: ENAR
	Chair: Mohammed Chowdhury, Kennesaw State University
1:45	Notes on Kernel Based Mode Estimation Using More Efficient Sampling Designs
	Hani Samawi*, Haresh Rochani, JingJing Yin, Daniel Linder and Robert Vogel,
_	Georgia Southern University
2:00	An Exact Test of Fit for the Gaussian Linear Model Using Optimal Nonbipartite Matching
	Samuel D. Pimentel*, Dylan S. Small and Paul R. Rosenbaum, University of Pennsylvania
2:15	Non-Inferiority Test Based on Transformations for Non-Normal Distributions
	Santu Ghosh*, Georgia Regents University
	Arpita Chatterjee, Georgia Southern University Samiran Ghosh Wayne State University
2.30	Nonnarametric Multivariate Change-Point: Estimation and Testing of Existence
2.00	Sebastian J Teran Hidalgo* and Michael B. Kosorok
	University of North Carolina, Chapel Hill
_	Michael C. Wu, Fred Hutchinson Cancer Research Center
2:45	Adjusted Empirical Likelihood Method for Treatment Comparisons in Linear Models
_	Haiyan Su* and Xi Kang, Montclair State University Wei Ning, Bowling Green State University
3:00	Penalised Spline Estimation for Generalised Partially Linear Single-Index Models
	Yuankun Zhang* and Yan Yu, University of Cincinnati Chaojiang Wu, Drexel University
3:15	Floor Discussion
92.	CONTRIBUTED PAPERS: Spatiotemporal Modeling Sponsor: ENAR Chair: Michael Regier, West Virginia University
------	--
1:45	Modelling Nonlinear Lagged Effects with Spatial Heterogeneity Lung-Chang Chien*, University of Texas School of Public Health, San Antonio Kai Zhang, University of Texas School of Public Health, Houston Yuming Guo, University of Queensland School of Public Health Hwa-Lung Yu, National Taiwan University
2:00	Stepwise And Stagewise Approaches for Spatial Cluster Detection Jiale Xu and Ronald Gangnon*, University of Wisconsin
2:15	 A Spatio-Temporal Approach for Modeling the Effects of Weather and Climate on Malaria Distributions in West Africa Ali Arab*, Georgetown University Monica Jackson, American University Cezar Kongoli, University of Maryland, and National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite Data and Information Service (NESDIS)
2:30	An Uncertainty Quantification Approach for Deterministic Spatial Interpolations Robert J. Waken*, Baylor University Soohyun Kwon and GyuWon Lee, Kyungpook National University Joon Song, Baylor University
2:45	Modeling High Dimensional Multichannel Electroencephalograms Lechuan Hu* and Hernando Ombao, University of California, Irvine
3:00	Non-Separable Dynamic Nearest-Neighbor Gaussian Process Models for Large Spatio-Temporal Data with an Application to Particulate Matter Analysis Abhirup Datta*^, University of Minnesota Sudipto Banerjee, University of California, Los Angeles Andrew O. Finley, Michigan State University Nicholas A.S. Hamm, University of Twente Martijn Schaap, TNO Built Environment and Geosciences
3:15	An Exploratory Coherence Analysis of Electroencephalograms using the Functional Boxplots Approach Duy Ngo*^ and Hernando Ombao, University of California, Irvine
93.	CONTRIBUTED PAPERS: SUrvival Analysis: Multivariate and Hierarchical Sponsor: ENAR Chair: Paul Bernhardt, Villanova University
1:45	Circulatory Disease Mortality in a Pooled Analysis of the Massachusetts and Canadian Tuberculosis Fluoroscopy Cohorts Van Tran*, National Cancer Institute, National Institutes of Health Lydia B. Zablotska, University of California, San Francisco Alina V. Brenner and Mark P. Little, National Cancer Institute, National Institutes of Health
2:00	A Joint Frailty Model for Zero-Inflated Recurrent Events and a Terminal Event in a Matched Study Cong Xu*, Ming Wang and Vernon Chinchilli, The Pennsylvania State University
2:15	A Three-State Markov Frailty Model for Interval Censored Caries Life History Data Daewoo Pak*, Chenxi Li and David Todem, Michigan State University
2:30	A Score Test for Copula-Based Bivariate Survival Model, with an Application to Genome-Wide Analysis for Progression of Age-Related Macular Degeneration Yi Liu*, Ying Ding and Wei Chen, University of Pittsburgh

73

2:45	Mixture Models for Left-Censored and Irregularly-Censored Data: Applications to a Cancer Screening Cohort Assembled from Electronic Health Records
	Li C. Cheung* and Qing Pan, George Washington University Noorie Hyun, National Cancer Institute, National Institutes of Health Barbara Fetterman, Kaiser Permanente, Northern California Philip E. Castle, Albert Einstein School of Medicine Hormuzd A. Katki, National Cancer Institute, National Institutes of Health
3:00	Regression Analysis of Interval Censored Data in the Presence of Cured Subgroup and Mismeasured Covariates
_	Yeqian Liu*, University of Missouri, Columbia Tao Hu, Capital Normal University Jianguo Sun, University of Missouri, Columbia
3:15	Accounting for Heterogeneity When Evaluating Surrogate Endpoints in a Discrete- Time Survival Model
	Andrew J. Spieker*, University of Washington Ying Huang, Fred Hutchinson Cancer Research Center
3:30 - 3:45 pm	Refreshment Break with Our Exhibitors
3:45 - 5:30 pm	Oral Presentations
94.	Some New Developments in the Modern Longitudinal Data Analysis Sponsors: ENAR, ASA Biometrics Section Organizer & Chair: Shengchun Kong, Purdue University
3:45	Marginal Regression Model for Longitudinal Network Data Yan Zhou, Merck & Co. Peter X.K. Song*, University of Michigan
4:10	Multivariate Semi-continuous Two Part Fixed Effects Models
_	Yaoguo Xie, Zhengjun Zhang*, Paul Rathouz and Bruce Barrett, University of Wisconsin, Madison
4:35	Generalized Additive Partial Linear Models for Clustered Data with Diverging Number of Covariates Using GEE
_	Hua Liang*, George Washington University Heng Lian, University of New South Wales, Australia Lan Wang, University of Minnesota
5:00	The Modeling of Medical Expenditure Data from a Longitudinal Survey using the Gener- alized Method of Moments (GMM) Approach
	Zachary Hass and Michael Levine [*] , Purdue University Laura P. Sands, Virginia Tech Jeffrey CY. Ting, American Credit Acceptance Huiping Xu, Indiana University Purdue University, Indianapolis
5:25	Floor Discussion
95.	Statistical Considerations in Personlized Medicine: Concept and Methodology Sponsors: ENAR, ASA Biometrics Section Organizers: Jincao Wu, Yaji Xu and Haiwen Shi, U.S. Food and Drug Administration Chair: Jincao Wu, U.S. Food and Drug Administration
3:45	The Impact of Companion Diagnostic Device Measurement Performance on Clinical Validation of Personalized Medicine Meijuan Li*, Tinghui Yu and Yun-Fu Hu, U.S. Food and Drug Administration

4:10	Personalized Oncology in 2015: New Paradigms in Clinical Trial Methodology
-	KICHARG MACEY SIMON* , National Cancer Institute, National Institutes of Health
4:35	Bias Correction in Estimating the Heterogeneous Treatment Effect in Subgroup Analysis
-	Lu Tian*, Stanford University Lee-Jen Wei, Harvard School of Public Health
5:00	The Brave New World of Cancer Clinical Trials: Learning Who Benefits from What?
_	Donald Berry*, University of Texas MD Anderson Cancer Center
5:25	Floor Discussion
96.	Innovative Techniques Towards Solving the Complexities of Biomarker Discovery Sponsor: ENAR Organizer: Tanya Garcia, Texas A&M University Chair: Siying Li, University of North Carolina, Chapel Hill
3:45	Designing Disease Elimination Strategies using Models and Data from Multiple Sources John M. Marshall*, University of California, Berkeley
4:10	Analysis of Proportional Hazards Model with Sparse Time-Dependent Covariates
	Jason Fine*, University of North Carolina, Chapel Hill
4:35	A Multi-Step Classifier Identifies Cohort Heterogeneity in Cancers Leading to Improved Accuracy of Prognostic Biomarkers
	Samuel Mueller*, University of Sydney Ellis Patrick, Harvard Medical School Jean Yang, University of Sydney
5:00	Cox Regression with Exclusion Frequency-based Weights to Identify Neuroimaging Markers Relevant to Huntington's Disease Onset
_	Tanya P. Garcia*, Texas A&M University Samuel Mueller, University of Sydney
5:25	Floor Discussion
97.	New Developments of Bayesian Methods for Causal Inference Sponsors: ENAR, ASA Bayesian Statistical Science Section, ASA Section on Statistics in Epidemiology
	Organizer & Chair: Bo Lu, The Ohio State University
3:45	A Nonparametric Bayesian Approach for Estimating the Average Causal Effect
	BO LU, STEVEN N. MACEACNERN* and Ling Wang, The Unio State University
4:15	Bayesian Interence about Causal Effects in the Presence of Unmeasured Confounding
-	Joseph W. Hogan* and Allison K. DeLong, Brown University Michael J. Daniels, University of Texas, Austin
4:45	A Bayesian Nonparametric Approach to Marginal Structural Models for Point Treat- ments and a Continuous or Survival Outcome
-	Jason Roy* and Kirsten Lum, University of Pennslyvania Michael J. Daniels, University of Texas, Austin
5:15	Discussant:
	Michael Rosenblum, Johns Hopkins University

98.	Integrative Analysis of Multi-OMIC Data for Understanding Complex Human Diseases Sponsors: ENAR, ASA Statistics in Genomics and Genetics Organizer & Chair: Yijuan Hu, Emory University
3:45	Longitudinal Gaussian Graphical Models Integrate Gene Expression and Sequencing Data for Autism Risk Gene Detection Kevin Lin, Carnegie Mellon University Han Liu, Princeton University Kathryn Roeder*, Carnegie Mellon University
4:10	Prioritization of Disease-Causing Genetic Variants Through Integrated Analysis of Association Signals and Genomic Functional Annotation Qiongshi Lu, Ryan Powles, Xinwei Yao, Yiming Hu, Jiehuan Sun, Yuwei Cheng, Kei Cheung, Qian Wang, Beixin He and Hongyu Zhao*, Yale University
4:35	Integrated Analysis of DNA Methylation, Genetic Variation, and Gene Expression Data in Human Aging Karen N. Conneely*, Elizabeth M. Kennedy, Lynn M. Almli and Alicia K. Smith, Emory University School of Medicine Elisabeth B. Binder, Max Planck Institute of Psychiatry and Emory University School of Medicine Kerry J. Ressler, Harvard Medical School and Emory University School of Medicine
5:00	Integrative Multi-omic Analysis of X Chromosome Inactivation in Epithelial Ovarian Cancer Nicholas B. Larson*, Stacey J. Winham, Zach Fogarty and Melissa C. Larson, Mayo Clinic Brooke L. Fridley, University of Kansas Medical Center Ellen L. Goode, Mayo Clinic
5:25	Floor Discussion
99.	Analysis of Next-Generation Sequencing Data: Increasing Accuracy and Novel Applications Sponsors: ENAR, ASA Biometrics Section, ASA Statistics in Genomics and Genetic Organizer & Chair: Sujay Datta, University of Akron
3:45	The Next Generation of (Epi-) Genomic Data: Single Cells Faye Zheng and Rebecca W. Doerge*, Purdue University
4:05	Dispensing with the Bioinformatics Pipeline: State Space Models for NGS Base-calling and Error Correction Karin S. Dorman* Xin Yin and Aditya Bamamoorthy, Jowa State University
4.25	Can Engenetic Profiles Predict Genetic Risk for Blood Disorders?
	Paul Auer*, University of Wisconsin, Milwaukee Alex Reiner, Fred Hutchinson Cancer Research Center
4:45	Deconvolving Copy Number Profiles of Cancer Genomes using NGS Data Xuefeng Wang*, Stony Brook University
5:05	Discussant: Susmita Datta, University of Florida

100.	Networks for High Dimensional Time Series Sponsors: IMS, ENAR Organizer: Ali Shojaie, University of Washington Chair: Min Jin Ha, University of Texas MD Anderson Cancer Center
3:45	Lag Structured Modeling for High Dimensional Vector Autoregression William Nicholson, Jacob Bien* and David Matteson, Cornell University
4:15	Non-Gaussian Estimation for Time Series Sampled at Mixed Frequencies Alex Tank, Emily Fox* and Ali Shojaie, University of Washington
4:45	Network Reconstruction from High Dimensional Ordinary Differential Equations Shizhe Chen, Ali Shojaie*, Daniela Witten, University of Washington
5:15	Discussant: George Michailidis, University of Florida
101.	CONTRIBUTED PAPERS: Environmental and Ecological Applications Sponsor: ENAR Chair: Emily Leary, University of Missouri
3:45	An Adaptive Association Test for Microbiome Data
-	Chong Wu*, Junghi Kim and Wei Pan, University of Minnesota
4:00	A Class of Distance Tests for Comparing Environmental Exposure Distributions in Presence of Detection Limits
_	Yuchen Yang*, Brent Shelton, Richard Kryscio and Tom Tucker, University of Kentucky Li Li, Case Western Reserve University Li Chen, University of Kentucky
4:15	Dietary Patterns and Determinants of Mercury and Omega-3 Exposure in Pregnant Women Living in the Seychelles
	Tanzy Love*, University of Rochester Maria Mulhern, Ulster University Sally Thurston, University of Rochester Alison Yeates, Ulster University Katie Evans, Dupont Maxine Bonham and Emeir McSorley, Ulster University Conrad F. Shamlaye, Seychelles J. J. Strain, Ulster University Philip W. Davidson, University of Rochester
4:30	Spatial Prediction of Naturally Occurring Indoor Gamma Radiation in Great Britain Pavel Chernyavskiy, National Cancer Institute, National Institutes of Health Gerald M. Kendall, University of Oxford Philip S. Rosenberg, National Cancer Institute, National Institutes of Health
	Mark P. Little*, National Cancer Institute, National Institutes of Health
4:45	Bayesian Distributed Lag Interaction Models
_	Ander Wilson*, Harvard School of Public Health Yueh-Hsiu Mathilda Chiu and Rosalind Wright, Icahn School of Medicine at Mount Sinai Brent Coull, Harvard School of Public Health
5:00	Estimation of the Effectiveness of Influenza Vaccination from Household Studies Kylie Ainslie* and Michael Haber, Emory University
5:15	A Stochastic Epidemic Model to Identify Unobserved Urban Insect Infestations Erica M.W. Billig*, Jason A. Roy and Michael Z. Levy, University of Pennsylvania

77

102.	CONTRIBUTED PAPERS: Genomics Sponsor: ENAR
0.45	Detecting of the in Magaler reported (MKa) Derived from Induced Division of the
3:45	Cells (iPSCs)
	Kai Kammers*, Jeffrey T. Leek and Ingo Ruczinski,
	Joshua Martin, The GeneSTAR Program, Johns Hopkins School of Medicine
	Margaret A. Taub, Johns Hopkins Bloomberg School of Public Health
	Linzhao Cheng and Zack Z. Wang, Johns Hopkins School of Medicine
	Rasika A. Mathias and Lewis Becker, The GeneSTAR Program,
4:00	Detecting Rare Haplotype-Environment Interaction Under Uncertainty of Gene-Envi- ronment Independence Assumption
	Yuan Zhang*, University of Texas, Dallas
	Shili Lin, The Ohio State University Swati Biswas. University of Texas. Dallas
4:15	A Numerical Method for Likelihood Estimation of Species Trees from Large Genomic
	Data Using the Coalescent Process
-	Arindam RoyChoudhury*, Columbia University
4:30	A Statistical Framework for Predictive Modeling of Microbiome Data Integrating the Phylogenetic Tree
	Jun Chen* and Jian Xiao, Mayo Clinic
4:45	Promise-Me: A Robust Method for Integrated Analysis of DNA Methylation, Gene Expression, and Multiple Biologically Related Clinical and Pharmacological Outcomes
-	Xueyuan Cao, Stanley B. Pounds* and Tong Lin, St. Jude Children's Research Hospital
5:00	Integrated Analysis of Multidimensional (Epi)Genetic Data on Cutaneous Melanoma Prognosis
	Yu Jiang*, University of Memphis Xingije Shi, Napijng University of Finance and Economics, China
	Qing Zhao and Shuangge Ma, Yale University
5:15	Detection of Shared Common Genetic Variants Between Complex Disease Pairs
	Julie Kobie*^, University of Pennsylvania Sibai D. Zhao, University of Illinois, Urbana-Champaign
	Yun R. Li and Hakon Hakonarson, The Children's Hospital of Philadelphia
100	
103.	CUNIKIBUIED PAPEKS: META-ANAIYSIS
	Chair: Santu Ghosh, Georgia Regents University
3:45	Integrative Analysis for Pathway Selection Using Individual Patient Data
-	Quefeng Li*, University of North Carolina, Chapel Hill Menggang Yu and Sijian Wang, University of Wisconsin, Madison
4:00	Alternative Measures of Between-Study Heterogeneity in Meta-Analysis: Reducing the Impact of Outlying Studies
-	Lifeng Lin*^, Haitao Chu and James S. Hodges, University of Minnesota

ENAR 2016
Scientific Program
Tuesday
March 8

4:15	Testing for Publication Bias Under the Copas Selection Model in Meta-Analysis
	Yong Chen, University of Pennsylvania Jing Ning, University of Texas MD Anderson Cancer Center Jin Piao*, University of Texas Health Science Center, Houston
4:30	Parametric Bootstrap to Construct Confidence Intervals for Event Rates or Differences in Rates in Meta-Analyses
_	Gaohong Dong*, Novartis Pharmaceuticals Corporation Roland Fisch, Novartis Pharma AG Jennifer Ng, Novartis Pharmaceuticals Corporation Steffen Ballerstedt and Marc Vandemeulebroecke, Novartis Pharma AG
4:45	Using Meta-Analytic Approaches for Analyzing Non-Converging Clustered Dependent Binary Data
-	Aobo Wang* and Roy T. Sabo, Virginia Commonwealth University
5:00	A Lineup Protocol for Funnel Plot Assessment in Meta-Analysis
-	Michael P. LaValley*, Boston University School of Public Health
5:15	Floor Discussion
104.	CONTRIBUTED PAPERS: Semi-Parametric and Non-Parametric Methods Sponsor: ENAR Chair: Olli Saarela, University of Toronto
3:45	Single Index Modeling and Estimation in Secondary Analysis of Case-Control Studies Liang Liang* and Raymond J. Carroll, Texas A&M University Yanyuan Ma, University of South Carolina
4:00	Marginal Mean Models for Zero-Inflated Count Data with Spline-Based Semiparametric Estimation David Todem* and Yifan Yang, Michigan State University Wei-Wen Hsu, Kansas State University KyungMann Kim, University of Wisconsin, Madison
4:15	Nonparametrically Assisted Parametric Regression Analysis for Multiple-Infection Group Testing Data Dewei Wang* and Peijie Hou, University of South Carolina
4:30	Nonparanormal Graphical Model Estimation with False Discovery Rate Control: A Score Test Approach Ritwik Mitra*, Yang Ning and Han Liu, Princeton University
4:45	Testing for Association in a Heterogeneous Sample Fangyuan Zhang*, Texas Tech University Jie Ding, Stanford University Shili Lin, The Ohio State University
5:00	A Maximum Alternative to the Cochran-Mantel-Haenszel Analysis Bernhard Klingenberg*, Williams College
5:15	Floor Discussion
105.	CONTRIBUTED PAPERS: Statistical Genetics: Heterogeneity and Hierarchy Sponsor: ENAR Chair: Minsun Song, University of Nevada, Reno
3:45	Aggregated Quantitative Multifactor Dimensionality Reduction Rebecca E. Crouch*, Katherine L. Thompson and Richard J. Charnigo, University of Kentucky
4:00 _	The Influence of Population Stratification on Genomic Heritability Gota Morota*, University of Nebraska, Lincoln

4:15	An Adaptive Testing Approach for Meta-Analysis of Gene Set Enrichment Studies Wentao Lu* and Xinlei Wang, Southern Methodist University
4:30	Modeling Secondary Phenotypes Conditional on Genotypes in Case-Control Studies
	Naomi C. Brownstein*, Florida State University Wei Xue, Jianwen Cai and Eric Bair, University of North Carolina, Chapel Hill
4:45	The Parametric t-test's Latent Weakness
	Daniel P. Gaile* and Jeffrey C. Miecznikowski, University at Buffalo
5:00	NanoStringDiff: A Novel Statistical Method for Differential Expression Analysis Based on NanoString nCounter Data
	Hong Wang*^, University of Kentucky Craig Horbinski, Northwestern University Hao Wu, Emory University Yinxing Liu, University of Kentucky Shaoyi Sheng, Paul Laurence Dunbar High School Arnold J. Stromberg and Chi Wang, University of Kentucky
5:15	Measurement Error in Tests for Gene-Environment Interactions: Implications of Gene- Environment Dependence
	Stacey Alexeeff*, Kaiser Permanente Division of Research Xihong Lin, Harvard School of Public Health
106.	CONTRIBUTED PAPERS: Variable Selection Sponsor: ENAR Chair: Hyokyoung Hong, Michigan State University
2:45	Data-Driven Confounder Selection Via Markov and Bayesian Networks
0.40	Jenny Haggstrom*, Umea University
4:00	Feature Selection for Complex Metabolite Network
	Qingpo Cai*, Emory University Jian Kang, University of Michigan Tianwei Yu, Emory University
4:15	Variable Selection in the Presence of Nonignorable Missing Data
	Jiwei Zhao*, State University of New York at Buffalo
4:30	Sequential Multiple Testing for Variable Selection
	Xinping Cui* and Hailu Chen, University of California, Riverside
4:45	Variable Selection for Model-Based Clustering of Functional Data
-	Kyra Singh* and Tanzy Love, University of Rochester
5:00	Bayesian Variable Selection Incorporating Biological Pathway Information Using Dependent Shrinkage Priors
-	Changgee Chang*, Suprateek Kundu and Qi Long, Emory University
5:15	Bayesian Spatial Feature Selection for Massive Neuroimaging Data Via Thresholded Gaussian Processes
	Ran Shi*^, Emory University Jian Kang, University of Michigan

Wednesday March 9

8:30 - 10:15 am	Oral Presentations
107.	Statistical and Computational Challenges in OMICS Data Integration Sponsors: ENAR, ASA Statistics in Genomics and Genetics Organizer: Ronglai Shen, Memorial Sloan-Kettering Cancer Center Chair: Veera Baladandayuthapani, University of Texas MD Anderson Cancer Center
8:30	Data Integration Using Network Analysis and Kernel Machine Methods Katerina Kechris*, Dominik Reinhold, Junxiao Hu and Debashis Ghosh, University of Colorado, Denver
8:50	Discovery of Novel Loci Associated with COPD by Pooling Information from Related Clinical Feature and Functional Annotation Jiehuan Sun* and Qiongshi Lu, Yale School of Public Health Russell P. Bowler, National Jewish Health Katerina J. Kechris, University of Colorado, Denver Hongyu Zhao, Yale School of Public Health
9:10	Bayesian Multivariate Modeling of the Sphingolipid PathwayChristine B. Peterson*, Stanford UniversityElin B. Sellers, Rice UniversityFrancesco C. Stingo, University of Texas MD Anderson Cancer CenterMarina Vannucci, Rice University
9:30	Leveraging Multiple Omics Data to Infer Pathway Disturbance in Complex Diseases Yuping Zhang*, SAMSI TCGA Data Integration Working Group, University of Connecticut
9:50	Integrating Clinical and Molecular Data for Survival Prediction in TCGA Bin Zhu*, National Cancer Institute, National Institutes of Health Nan Song, NSABP Foundation Ronglai Shen, Memorial Sloan Kettering Cancer Center Veera Baladandayuthapani, University of Texas MD Anderson Cancer Center Katerina Kechris, University of Colorado, Denver Hongyu Zhao, Yale University
10:10	Floor Discussion
108.	Statistical Methods to Handle Treatment Crossover and Switch to an Alternative Therapy in Randomized Controlled Trials Sponsors: ENAR, ASA Biopharmaceutical Section Organizer: Shijie Tang, Biostatistics Infinity Pharmaceuticals, Inc. Chair: Jingxiang Chen, University of North Carolina, Chapel Hill
8:30	Regression Based Imputation Analysis Adjusting for Subsequent Therapy Chengqing Wu*, Xiaolong Luo, Mingyu Li, Qiang Xu, Guang Chen, Bruce E. Dornseif and Markus F. Renschler, Celgene Gary Koch, University of North Carolina, Chapel Hill
8:55	Weighted Logrank Tests for Treatment Effects in Clinical Trials with Crossover Rajeev Ayyagari*, Analysis Group, Inc. James M. Robins, Harvard School of Public Health
9:20	On the Use of Rank-Preserving Structural Failure Time Model to Account for both Treatment Crossover and Switch to Alternative Therapies Liewen Jiang*, Shijie Tang, Biostatistics, Infinity Pharmaceuticals, Inc. Lingling Li, Harvard University

9:45	Biology, Causal Models, and Cross-over in Cancer Trials
_	James M. Robins*, Harvard School of Public Health
10:10	Floor Discussion
109.	Sentinel Statistical Methods Working Groups, Challenges With Using Claims Data for Public Health Sponsors: ENAR, ASA Biopharmaceutical Section, ASA Section on Statistics in Epidemiology Organizer & Chair: Rima Izem, U.S. Food and Drug Administration
8:30	Introduction to Sentinel Distributed Data System and Selected Methods Work
_	Judith C. Maro*, Harvard Medical School and Harvard Pilgrim Health Care Institute
9:00	Lessons Learned from Two Sentinel Sequential Surveillance Activities: Saxagliptin and Rivaroxaban
_	Bruce Fireman*, Kaiser Permanente Division of Research
9:30	Survival Methods for Postmarketing Medical Product Surveillance in a Distributed Network Andrea J. Cook* and Robert Wellman, Group Health Research Institute Rima Izem, Azadeh Shoaibi and Ram Tiwari, U.S. Food and Drug Administration Susan Heckbert, University of Washington Lingling Li, Harvard University Rongmei Zhang, U.S. Food and Drug Administration Jennifer Nelson, Group Health Research Institute
10:00	Discussant:
	Mark Levenson, U.S. Food and Drug Administration
110.	Statistical Modeling of Data on Heath Policy and Cost Sponsor: ENAR Organizer: Zhezhen Jin, Columbia University Chair: Yu Deng, University of North Carolina, Chapel Hill
8:30	On Statistical Modeling of National Surveys to Assess the Impact of State Specific Medical Marijuana Policies Christine Mauro, Columbia University Melanie M. Wall*, Columbia University and New York State Psychiatric Institute
8:55	An Improved Survival Estimator for Medical Costs with Censored Data Using Kernel Methods Shuai Chen*, University of Wisconsin, Madison Wenbin Lu, North Carolina State University Hongwei Zhao, Tayas A&M Health Science Center
0.20	Comparison in Modical Cost between a Cancer Surviver Cobert and the Caneral Bonu
9:20	lation Using Longitudinal Physician Claims
-	Huijing Wang* and X. Joan Hu, Simon Fraser University
9:45	"Nonparametric" Meta Analysis with Unknown Study-specific Parameters and with an Application to Health Policy Data
-	Min-ge Xie*, Rutgers University

111.	Weight Modification in Sample Surveys Sponsors: ENAR, ASA Survey Research and Methodology Section Organizer: Michael Elliott, University of Michigan Chair: Lei Huang, Johns Hopkins University
8:30	Weight Trimming and Weight Smoothing Procedures for Survey Data David Haziza*, Université de Montréal
8:55	Weight Modification in Sample Surveys: An Overview Malay Ghosh*, University of Florida
9:20	Weight Modification in Sample Surveys: Using Regression Models Qixuan Chen*, Columbia University
9:45	Weight Modification in Sample Surveys: Results from a Simulation Study Joe Sedransk*, University of Maryland
10:10	Floor Discussion
112.	Generalizing Clinical Data Across Studies/Populations Sponsors: ENAR, ASA Biometrics Section Organizers: Jingjing Ye and Haiwen Shi, U.S. Food and Drug Administration Chair: Haiwen Shi, U.S. Food and Drug Administration
8:30	Adjusted Comparisons to External Controls Using Both Individual Patient Data and Published Summary Statistics James E. Signorovitch*, Analysis Group Inc. David Cheng, Harvard University
8:55	Robust Methods for Treatment Effect Calibration, with Application to Non-Inferiority Trials Zhiwei Zhang*, Lei Nie and Guoxing Soon, U.S. Food and Drug Administration Zonghui Hu, National Institute of Allergy and Infectious Diseases, National Institutes of Health
9:20	Sensitivity Analysis for an Unobserved Moderator in RCT-to-Target Population Gener- alization of Treatment Effect Trang Q. Nguyen* and Cyrus Ebnesajjad, Johns Hopkins Bloomberg School of Public Health Stephen R. Cole, University of North Carolina, Chapel Hill Elizabeth A. Stuart, Johns Hopkins Bloomberg School of Public Health
9:45	Bayesian Network Meta-analyses of Multiple Diagnostic Tests Haitao Chu*, University of Minnesota Xiaoye Ma, Amgen Inc. Qinshu Lian, University of Minnesota Yong Chen, University of Pennsylvania Joseph G. Ibrahim, University of North Carolina, Chapel Hill
10:10	Floor Discussion
113.	Novel Statistical Methods for Sequencing Data - From Quality Control to False Positives Sponsors: IMS, ENAR Organizer: Zhaoxia Yu, University of California, Irvine Chair: Chad He, Fred Hutchson Cancer Research Center
8:30	A Generalized Similarity U Test for Multivariate Analysis of Sequencing Data Changshuai Wei, University of North Texas Health Science Center Qing Lu*, Michigan State University

83

8:55	Statistical and Computational Aspects in the Analysis of Genomic Data from Family Based Designs
_	Ingo Ruczinski*, Johns Hopkins Bloomberg School of Public Health
9:20	Empirical Estimation of Sequencing Error Rates Using Smoothing Splines
_	Xuan Zhu, Jian Wang, Bo Peng and Sanjay Shete*, University of Texas MD Anderson Cancer Center
9:45	Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level
	X. Jessie Jeng, North Carolina State University
	Z. John Daye, University of Arizona Wenhin Lu and Jung-Ying Tzeng* North Carolina State University
10.10	Floor Discussion
11/	OONTDIDUITED DADEDS, Devesion General Inforence
114.	GUNIRIBUIED PAPERS: BAYESIAII GAUSAI IIIIEIEIIGE Sponger: ENAD
	Chair: Rhonda Bacher. University of Wisconsin. Madison
8:30	Utilizing Validation Data: A Bayesian Variable Selection Approach to Adjust for Confounding
	Joseph Antonelli* and Francesca Dominici, Harvard School of Public Health
8:45	A Causal Inference Approach for Estimating an Exposure Response Curve: Estimating Health Effects at Low Pollution Levels
	Georgia Papadogeorgou*, Harvard University Francesca Dominici, Harvard School of Public Health
9:00	A Semi-Parametric Double Robust Bayesian's Approach to Casual Inference
_	Bin Huang* and Chen Chen, Cincinnati Children's Hospital Medical Center
9:15	Addressing Unmeasured Confounding Using External Validation Data: Improving BayesPS Approach
_	Negar Jaberasari* and Bin Huang, Cincinnati Children's Hospital Medical Center
9:30	Bayesian Methods for Multiple Mediators: Principal Stratification and Causal Mediation Analysis of Power Plant Emission Controls
	Chanmin Kim*, Harvard University
	Joseph Hogan, Brown University
_	Christine Choirat and Corwin Zigler, Harvard University
9:45	Floor Discussion
115.	CONTRIBUTED PAPERS: Biomarkers
	Sponsor: ENAR
	Chair: Nan Jia, Eli Lilly and Company
8:30	Estimating the Receiver Operating Characteristic Curve for Paired Family Data in a Case-Control Design
-	Yalda Zarnegarnia* and Shari Messinger Cayetano, University of Miami
8:45	Evaluating Longitudinal Biomarkers
	Rosa Oliveira, Instituto Politecnico do Porto, Portugal Raymond Carroll, Texas A&M University Armando Teixeira-Pinto*, University of Sydney

-
22
S
G
5
<u><u><u></u></u></u>
Ð
C
P
3
D
-
B
B
m
m v
I m We
I m Wed
im Wedne
im Wednes
im Wednesda
m Wednesday
m Wednesday I
m Wednesday M
im Wednesday Mai
m Wednesday Marc
m Wednesday March

0.00	Evolution of Dismonlana for Tractment Colorition Using Individual Doutisiant
9:00	Evaluation of Biomarkers for Treatment Selection Using Individual Participant Data Meta-Analysis
	Chaeryon Kang*, University of Pittsburgh Holly Janes, Fred Hutchinson Cancer Research Center
9:15	Comparing the Surrogacy of Multiple Vaccine-Induced Immune Response Biomarkers in HIV Prevention
	Sayan Dasgupta* and Ying Huang, Fred Hutchinson Cancer Research Center
9:30	Comparison of Methods for Updating Risk Prediction Models
	Sonja Grill*, Technical University Munich, Germany
	Donna P. Ankerst, Technical University Munich, Germany and University of Texas Health
	Ruth M. Pfeiffer. National Cancer Institute. National Institutes of Health
9:45	Evaluation of Biomarker Identification Through Likelihood Batio Test
	Yu-Chuan Chen* and James J. Chen, U.S. Food and Drug Administration
10:00	Meta-Analysis of Predictive Values of Biomarkers
	Mun Sang Yue* and Constantine A. Gatsonis, Brown University
116	CONTRIBUTED PAPERS: Comneting Risks
	Sponsor: ENAR
	Chair: Olive Buhule, National Institutes of Health
8:30	Checking Fine and Gray Model with Cumulative Sums of Residuals:
	Theory and Implementation
	Jianing Li*, Merck Mei- lie Zhang, Medical College of Wisconsin
	Thomas H. Scheike, University of Copenhagen
8:45	Competing Risks Model of Screening and Symptoms Diagnosis
_	Sheng Qiu* and Alexander Tsodikov, University of Michigan
9:00	Cause-Specific Hazard Regression for Competing Risks Data Under Interval Censoring and Left Truncation
-	Chenxi Li*, Michigan State University
9:15	Evaluating Center Performance on Competing Outcomes
-	Sai Hurrish Dharmarajan* and Douglas E. Schaubel, University of Michigan
9:30	Adaptive Group Bridge for Competing Risks Data
-	Natasha A. Sahr*, Kwang Woo Ahn and Anjishnu Banerjee, Medical College of Wisconsin
9:45	Evaluating Utility Measurement from Recurrent Marker Processes in the Presence of Competing Terminal Events
	Yifei Sun* and Mei-Cheng Wang. Johns Hopkins University
10:00	Floor Discussion
117	CONTRIBUTED DADERS: CWAS: Testing
	Sponsor: ENAR
	Chair: Luis Leon Novelo, University of Texas School of Public Health
8:30	Measuring and Testing Dependence by Kernelized RV Coefficient
	Xiang Zhan*^, Ni Zhao and Michael C. Wu, Fred Hutchinson Cancer Research Center
8:45	Adaptive Gene- and Pathway-Trait Association Testing with GWAS Summary Statistics
	II-Youp Kwak* and Wei Pan, University of Minnesota
-	

Rvan Sun* and Xihong Lin. Harvard University
Testing for Genetic Associations in Arbitrarily Structured Populations
Minsun Song*, University of Nevada Reno Wei Hao and John D. Storey, Princeton University
Novel Statistical Test for Genetic Pleiotropy
Daniel J. Schaid*, Mayo Clinic
An Adaptive Multivariate Test in Applications to Multiple Trait-Multiple Genetic Variant Associations for GWAS and Sequence Data
Junghi Kim* and Wei Pan, University of Minnesota
Floor Discussion
CONTRIBUTED PAPERS: Measurement Error
Sponsor: ENAR
The Orthogonally Partitioned EM Algorithm: Extending the EM Algorithm for Algorith-
mic Stability for Bias Correction Due to Imperfect Data
Michael Regier*, West Virginia University Erica Moodie, McGill University
A Simulation Study of Nonparametric Total Deviation Index as a Measure of Agree- ment Based on Quantile Regression
Yi Pan*, Centers for Disease Control and Prevention
Lawrence Lin, JBS Consulting Services Company
Huiman Barnhart, Duke Clinical Research Institute, Duke University Michael Haber, Emory University
There is no Impact of Exposure Measurement Error on Latency Estimation in Linear Models
Sarah B. Peskoe*, Molin Wang and Donna Spiegelman, Harvard School of Public Health
Improved Estimation for High Dimensional Measurement Error Models
Abhishek Kaul*, National Institute of Environmental Health Sciences, National Institutes of Health
Identifying Heat Waves in Florida: The Impact of Missing Exposure Data and Thresh- olds on Missingness
Emily Leary*, University of Missouri, Columbia Linda J. Young, University of Florida
Optimal Design Strategy to Achieve a Pre-Specified Power when the Biomarker is Subject to Measurement Error
Matthew T. White*, Boston Children's Hospital Sharon X. Xie, University of Pennsylvania
The Estimation of Misclassification Via Continuous-Time Hidden Markov Model
Ligiong Fan* and Sharon Yeatts, Medical University of South Carolina
CONTRIBUTED PAPERS: Statistical Genetics
Sponsor: ENAR
Chair: Babette Brumback, University of Florida
A Functional Weighted U Test for Detecting Gene-Gene Interactions
Pei Geng* and Qing Lu, Michigan State University

Z
AR
20
16
SCI
en
Ħ
CP
TO
gra
В
W
Wedn
Wednesc
Wednesday
Wednesday M:
Wednesday Marc
Wednesday March 9

8:45	Time-Course Gene Set Analysis of Longitudinal RNA-Seq Data
_	Boris P. Hejblum*, Harvard School of Public Health Denis M. Agniel, Harvard Medical School
9:00	A Powerful and Data-Adaptive Test for Rare Variant-Based GXE Analysis
-	Tianzhong Yang* and Peng Wei, University of Texas School of Public Health
9:15	Mediation Methods for Case-Control Settings with Applications to Genomics Sheila M. Gaynor* and Xihong Lin, Harvard School of Public Health
9:30	A Random Field Method for Genetic Association Analysis of Correlated Phenotypes Derived from Electronic Medical Records
_	Xue Zhong* and Nancy J. Cox, Vanderbilt University
9:45	Statistical Considerations in Analytical Validations for Sequencing Based Genetic Tests
_	Jincao Wu* and Meijuan Li, U.S. Food and Drug Administration
10:00	Floor Discussion
10:15 - 10:30 am	Refreshment Break with Our Exhibitors
0:30 am - 12:15 pm	Oral Presentations
120.	Inference for Brain Networks Sponsors: ENAR, ASA Section on Statistics in Imaging Organizer: Lei Huang, Johns Hopkins University Chair: Michael Elliott, University of Michigan
10:30	Population Inference for Functional Brain Connectivity Manjari Narayan, Rice University Genevera I. Allen*, Rice University and Baylor College of Medicine
10:55	Robust Brain Structural Connectivity Analysis Using HCP Data Zhengwu Zhang*, SAMSI and University of North Carolina at Chapel Hill Antonio Canale, University of Turin David B. Dunson. Duke University
11:20	Node-wise Inference for Groups of Connectivity Graphs
11:45	Disentangling Brain Graphs: The Conflation of Network and Connectivity Inference Sean L. Simpson* and Paul J. Laurienti, Wake Forest School of Medicine
12:10	Floor Discussion
121.	Recent Development in Joint Modeling for Longitudinal Data Sponsors: ENAR, ASA Biometrics Section Organizer: Cheng Yong Tang, Temple University Chair: Zhaoxia Yu, University of California, Irvine
10:30	Bayesian Methods for Non-ignorable Dropout in Joint Models in Smoking Cessation Studies
-	Michael J. Daniels*, University of Texas, Austin
11:00	Mean-Correlation Regression for Discrete Longitudinal Responses
	Cheng Yong Tang*, Temple University Weiping Zhang, University of Science and Technology of China

11:30	Simultaneous Mean and Covariance Modeling of Chronic Kidney Disease
	Xiaoyue Niu*, The Pennsylvania State University Peter Hoff, University of Washington
12:00	Discussant:
	Mohsen Pourahmadi, Texas A&M University
122.	Model Validation: Its Concept, Statistical Integrity, Regulatory Landscape, and Industry Application Sponsor: ENAR Organizers: Victoria Petrides, Abbott Diagnostics, Norberto Pantoja-Galicia and Haiwen Shi, U.S. Food and Drug Administration Chair: Victoria Petrides, Abbott Diagnostics
10:30	Issues with Training, Testing and Validation Datasets in the Development of Diagnostic Devices
-	R. Lakshmi Vishnuvajjala*, U.S. Food and Drug Administration
10:55	Establishing Clinical Usefulness of a Diagnostic Test Intended to Guide Therapy Decisions Lisa M. McShane*, National Cancer Institute, National Institutes of Health
11:20	Guidelines for Reporting Studies that Develop or Validate a Multivariable Risk Prediction Model Doug Altman and Gary Collins*, University of Oxford
11:45	Model Validation: An Industry Case Study Susan H. Gawel*, Abbott Labs
12:10	Floor Discussion
123.	Missing Data in Longitudinal Clinical Trials: Choice of Primary Estimand and It's Relationship to the Statistical Analysis Methods Sponsor: ENAR Organizers: Elena Polverejan and Cristiana Mayer, Janssen R&D Chair: Elena Polverejan, Janssen R&D
10:30	Choice of Estimand and Missing Data in Clinical Trials Roderick J. Little*, University of Michigan
11:00	Role of Simulations in the Selection of the Primary Estimand and Statistical Methods for Handling Missing Data in Longitudinal Trials Elena Polverejan*, Janssen R&D
11:30	Choosing Estimands in Clinical Trials with Missing Data Craig H. Mallinckrodt*, Eli Lilly and Company
12:00	Discussant: Thomas Permutt, U.S. Food and Drug Administration
124.	Bayesian Analysis of Complex Survey Data Sponsors: ENAR, ASA Survey Research and Methodology Section Organizer: Sahar Zangeneh, Fred Hutchinson Cancer Research Center Chair: Qixuan Chen, Columbia University
10:30	Cluster Like You Do: When to Avoid Traditional Clustering Approaches in the Presence of Sparse Data Rebecca C. Steorts*, Duke University
10:55	Spatial Smoothing of Complex Survey Data for Small Area Estimation Jon Wakefield*, University of Washington

11:20	Multilevel Regression and Poststratification for Survey Weighted Inference
	Yajuan Si*, University of Wisconsin, Madison Andrew Gelman, Columbia University
11:45	Robust Bayesian Models for Surveys with Missing Data and External Information
	Sahar Z. Zangeneh*, Fred Hutchinson Cancer Research Center Roderick J.A. Little, University of Michigan
12:10	Floor Discussion
125.	Causal Inference in Social Networks
	Sponsors: ENAR, ASA Biometrics Section
	Organizer: Lan Liu, Harvard University
	Chair: Hana Lee, Brown University
10:30	Causal Estimation of Peer Effects in Longitudinal Dyadic Data Using Instrumental Variables
	A. James O'Malley*, Geisel School of Medicine at Dartmouth
	Felix Elwert, University of Wisconsin, Madison
	Alan M. Zaslavsky, Harvard Medical School
_	Nicholas A. Christakis, Yale University
10:55	Observational Causal Inference in Community-Structured Social Networks
_	Cosma R. Shalizi*, Carnegie Mellon University
11:20	Indirect Adjustment for Homophily Bias with a Negative Control Variable in Peer
	Effect Analysis
11.45	Segregated Crophe and Marginele of Chain Croph Modele
11.40	Ilya Shpitser*, Johns Hopkins University
12:10	Floor Discussion
126	Antimal Design for Nonlinear Models
120.	Sponsors: IMS ENAB
	Organizer: Dan Gillen, University of California, Irvine
	Chair: Matt Shotwell, Vanderbilt University
10:30	A Bayesian Decision Theoretic Approach to Experimental Designs for Hormesis
	Steven B. Kim*, California State University, Monterey Bay
_	Scott M. Bartell and Daniel L. Gillen, University of California, Irvine
11:00	Optimal Design for Dose-finding Study with Delayed Responses
	Tian Tian, University of Illinois, Chicago
	Min Yang*, University of Illinois, Chicago
11:30	Nature-inspired Meta-heuristic Algorithms for Generating Optimal Designs for
	Nonlinear Models
-	Weng Kee Wong*, University of California, Los Angeles
12:00	Floor Discussion
127.	CONTRIBUTED PAPERS: Bayesian Methods
	Sponsor: ENAR
	Chair: Arpita Chatterjee, Georgia Southern University
10:30	Bayesian Regression Analysis for Estimating Disease Etiology
_	Zhenke Wu* and Scott L. Zeger, Johns Hopkins Bloomberg School of Public Health

10:45	Controlling for Systematic Bias in Allelic Imbalance Estimation Using a Negative Binomial Bayesian Model
	Luis G. Leon Novelo*, University of Texas School of Public Health Lauren M. McIntyre, Alison R. Gerken and Alison M. Morse, University of Florida College of Medicine Justin M. Fear, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
_	Sergey Nuzhdin, University of Southern California
11:00	Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration
	Liang Liang Zhang*, Justin Mrkva, Sajjad Seyedsalehi and Jongeun Choi, Michigan State University Chae Young Lim, Seoul National University Tapabrata Maiti and Seungik Baek, Michigan State University
11:15	Spatial Skew-Normal/Independent Models for Clustered Periodontal Data with Non- Random Missingness
	Dipankar Bandyopadhyay*, Virginia Commonwealth University Victor H. Lachos, University of Campinas, Brazil Marcos Prates, Universidade Federal de Minas Gerais, Brazil Xioayue Zhao, University of Minnesota
11:30	Bayesian Approach for Clustered Interval-Censored Data with Time-Varying Covariate Effects
_	Yue Zhang* and Xia Wang, University of Cincinnati Bin Zhang, Cincinnati Children's Hospital Medical Center
11:45	Repulsive Priors for Meaningful Inferences in Biomedical Applications Yanxun Xu*, Johns Hopkins University Peter Mueller, University of Texas, Austin Donatello Telesca, University of California, Los Angeles
12:00	A Model and R Package for Bayesian Survival and Multistate Analysis Adam King*, California State Polytechnic University, Pomona
128.	CONTRIBUTED PAPERS: Causal Inference in Epidemiology and Health Policy Sponsor: ENAR Chair: Bin Huang, Cincinnati Children's Hospital Medical Center
10:30	Defining and Estimating Causal Direct and Indirect Effects when Setting the Mediator to Specific Values is not Feasible Judith J. Lok*, Harvard School of Public Health
10:45	Using Structural-Nested Models to Estimate the Effect of Cluster-Level Adherence on Individual-Level Outcomes with a Three-Armed Cluster-Randomized Trial
	Babette A. Brumback*, University of Florida Zhulin He, Iowa State University Shanjun Helian, University of Florida Matthew Freeman, Emory University Richard Rheingans, University of Florida
11:00	A Multiple-Imputation Based Doubly Robust Estimation of Treatment Effects in Longi- tudinal Studies
_	Tingting Zhou*, Michael Elliott and Roderick Little, University of Michigan
11:15	A General Approach on Causal Mediation Analysis Pan Wu*, Christiana Care Health System
-	-

ensity Score for Continuous Treatment Regimes ry University sclassifications in Mendelian Randomization Studies , Milwaukee d Categorical Data Analysis 's Hospital tiated Power Lindley-Logarithmic Distribution: ennsylvania rsity of Pennsylvania Jniversity Odds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
ry University sclassifications in Mendelian Randomization Studies , Milwaukee d Categorical Data Analysis 's Hospital tiated Power Lindley-Logarithmic Distribution: ennsylvania rrsity of Pennsylvania Jniversity Odds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
sclassifications in Mendelian Randomization Studies , Milwaukee d Categorical Data Analysis 's Hospital tiated Power Lindley-Logarithmic Distribution: ennsylvania rrsity of Pennsylvania Jniversity Odds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
, Milwaukee d Categorical Data Analysis 's Hospital tiated Power Lindley-Logarithmic Distribution: ennsylvania rrsity of Pennsylvania Jniversity Ddds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
d Categorical Data Analysis 's Hospital tiated Power Lindley-Logarithmic Distribution: ennsylvania rsity of Pennsylvania Jniversity Ddds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
d Categorical Data Analysis 's Hospital tiated Power Lindley-Logarithmic Distribution: ennsylvania rrsity of Pennsylvania Jniversity Odds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using rrsity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
's Hospital tiated Power Lindley-Logarithmic Distribution: ennsylvania ursity of Pennsylvania Jniversity Ddds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
tiated Power Lindley-Logarithmic Distribution: ennsylvania rsity of Pennsylvania Jniversity Odds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
ennsylvania rrsity of Pennsylvania Jniversity Odds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
Odds Ratios for Rare or Zero Events ee Health Science Center Data that Occur in Health Care Studies Using ersity ment Institute a Two-Way Contingency Table with Covariates na Upstate hnic Institute
ee Health Science Center Data that Occur in Health Care Studies Using arsity ment Institute a Two-Way Contingency Table with Covariates na Upstate hnic Institute
Data that Occur in Health Care Studies Using arsity ment Institute a Two-Way Contingency Table with Covariates ha Upstate hnic Institute
rrsity ment Institute a Two-Way Contingency Table with Covariates na Upstate hnic Institute
a Two-Way Contingency Table with Covariates na Upstate hnic Institute
na Upstate hnic Institute
ated Binary Random Variables Via
ania Perelman School of Medicine
tcome
onsin
mplex Classification Settings
ania eral Hospital and Harvard Medical School Indianapolis I ara , University of Pennsylvania
dels for Longitudinal and Survival Data
ty of Sydney
Application to Medicald Data
n, University of Unitage
nonnonal Data and Survival in Fuo-cu-cue Survies

11:00	Dynamic Prediction for Multiple Repeated Measures and Event Time Data: An Application to Parkinson's Disease
	Jue Wang* [^] and Sheng Luo, University of Texas Health Science Center, Houston Liang Li, University of Texas MD Anderson Cancer Center
11:15	Flexible Link Functions in a Joint Model of Binary and Longitudinal Data
_	Dan Li*, Xia Wang and Seongho Song, University of Cincinnati Nanhua Zhang, Cincinnati Children's Hospital Medical Center Dipak K. Dey, University of Connecticut
11:30	Joint Modeling of Functional Data and Time to Event: An Application to Fecundity Studies
_	Ling Ma* and Rajeshwari Sundaram, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Animikh Biswas, University of Maryland Baltimore County
11:45	A Joint Model Approach for Longitudinal Data with no Time Zero and Time-To-Event with a Competing Risk
_	Olive D. Buhule* and Paul S. Albert , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
12:00	Floor Discussion
131.	CONTRIBUTED PAPERS: Personalized Medicine
	Sponsor: ENAR Chair: Corwin Zigler, Harvard University
10:30	Comparing Mobile Health Treatment Policies
_	Peng Liao*, Pedja Klasjna and Susan A. Murphy, University of Michigan
10:45	A Bayesian Approach for Exploring Heterogeneous Treatment Effects and Individualized Treatment Decisions
_	Nicholas C. Henderson*, Thomas A. Louis and Ravi Varadhan, Johns Hopkins University
11:00	Early Phase Designs for Targeted and Immunotherapeutic Agents: Preparing for Precision Medicine
_	Cody Chiuzan*, Columbia University
11:15	Estimating Optimal Treatment Recommendation in Observation Studies
_	Haoda Fu and Nan Jia*, Eli Lilly and Company
11:30	Combining Functional Additive Models and Advantage Learning for Estimating a Treatment Decision Rule
	Adam Ciarleglio* and Eva Petkova, New York University School of Medicine R. Todd Ogden, Columbia University Thaddeus Tarpey, Wright State University
11:45	Companion Diagnostic Device Partial Bridging Study in Precision Medicine - Challenges and Methods
	Meijuan Li and Yaji Xu*, U.S. Food and Drug Administration
12:00	Identifying Predictive Markers for Personalized Treatment Selection

132.	CONTRIBUTED PAPERS: SURVIVAL ANALYSIS Sponsor: ENAR Chair: Daniel Schaid, Mayo Clinic
10:30	A Unified Slice Sampler for Regression Analysis of Current Status Data Under Linear Transformation Models
-	Sheng-Yang (Sean) Wang* and Lianming Wang, University of South Carolina
10:45	An Extended Kaplan-Meier Estimator for Time to Success with Informative Censoring
	Wei Li* and Misun Lee, Astellas Pharma Development
11:00	Survival Data for Multiple Diseases from Stratified Case-Cohort Design
	Soyoung Kim* , Medical College of Wisconsin Jianwen Cai , Donglin Zeng and David J. Couper , University of North Carolina at Chapel Hill, Chapel Hill
11:15	Improved Estimation of Relative Risk Under Small Samples Using a Generalized Log- Rank Statistic
	Rengyi Xu* and Pamela A. Shaw, University of Pennsylvania Devan V. Mehrotra, Merck
11:30	Life Expectancy Estimation Based on Gompertz Function
	Zugui Zhang* and Paul Kolm, Christiana Care Health System
11:45	Detecting Associations Between Microbiome Composition and Time-To-Event Outcomes
	Anna Plantinga*, University of Washington Ni Zhao and Michael C. Wu, Fred Hutchinson Cancer Research Center
12:00	Semiparametric Structural Equation Models with Latent Variables for Right-Censored Data
	Kin Yau Wong*^, Danyu Lin and Donglin Zeng, University of North Carolina, Chapel Hill

ENAR 2016 Short Courses

	REGISTRATION RECEIVED					
	By Feb.1			After Feb.1		
	Half Day	Second Half Day	Full Day	Half Day	Second Half Day	Full Day
Member	\$225	\$190	\$325	\$250	\$215	\$350
Non-Member	\$275	\$240	\$375	\$300	\$265	\$400

SC1: Missing Data in Regression Models

FULL DAY: 8:00 am to 5:00 pm Joe Ibrahim

University of North Carolina at Chapel Hill

Overview: Missing data is a major issue in many applied problems, especially in the biomedical sciences. In this short course, we present a detailed account of the four common paradigms for inference in missing data problems. These are i) Maximum Likelihood (ML), ii) Multiple Imputation (MI), iii) Fully Bayesian (FB), and Weighted Estimating Equations (WEE). There is considerable interest as to how these four methodologies are related, the properties of each approach, the advantages and disadvantages of each methodology, and their computational implementation. We also discuss the various assumptions and definitions of missing data mechanisms, present several examples, and examine data that are missing at random (MAR) and/or nonignorably missing (MNAR), as well as missing covariate and/or response data. We will also discuss methods and applications for several types of models including generalized linear models, models for longitudinal data, and survival models. For each paradigm (ML, MI, FB, WEE) and model, we will present detailed case studies and software implementation in SAS, WinBUGS, and Cytel Studio's XMISS package.

Instructor Biography: Dr. Joseph Ibrahim is Alumni Distinguished Professor, Director of Graduate Studies, and Program Director of the Cancer Genomics Training grant, in the Department of Biostatistics at UNC. His areas of research focus are Bayesian inference, missing data problems, clinical trials, and cancer genomics. He has directed or co-directed 25 doctoral students and 8 post-doctoral fellows. He has taught courses in Bayesian statistics, Advanced Statistical Inference, Generalized Linear Models, and Missing Data in the Department of Biostatistics at UNC. He is currently the Editor for the Journal of the American Statistical Association – Applications and Case Studies. Dr. Ibrahim has published over 265 research papers, mostly in top statistical journals. He also has published two advanced graduate-level books on Bayesian survival analysis and Monte Carlo methods in Bayesian computation. Dr. Ibrahim has a long standing history of teaching half day and full day short courses at ENAR, JSM, and at pharmaceutical companies. He has done full day short courses in Meta-analysis and Network Meta-analysis, Bayesian Methods for Computation, Bayesian Survival Analysis, Missing Data in Regression Models, Bayesian Methods in SAS, Bayesian Methods in Clinical Trials, Joint Modeling of Longitudinal and Survival Data, Introduction to Longitudinal Data Modeling, Introduction to Bayesian Methods, and Informative Prior Elicitation. He is an elected fellow of the American Statistical Association and the Institute of Mathematical Statistics, and an elected member of the International Statistical Institute.

SC2: Statistical Analysis of Network Data

FULL DAY: 8:00 am to 5:00 pm Eric Kolaczyk

Boston University

Overview: Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. Their use has become especially prevalent in the biological and life sciences, particularly in computational biology and neuroscience. Accordingly, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research, and statistical methods therefore play a critical role in network analysis. This course will provide a broad treatment of foundational topics relevant to statistical analysis of network data across the disciplines. Material will be organized according to a statistical taxonomy, with presentation entailing a conscious balance of conceptual and technical aspects. Additionally, practical application of network analysis will be demonstrated in the context of the R software environment. Topics for the morning will include manipulation, visualization, and descriptive analysis of network data. In the afternoon, we will focus on network sampling and inference, and the modeling of networks and network-indexed processes. Specific examples of network analysis will be drawn from a variety of domain areas, with emphasis on computational biology and neuroscience and on social networks.

Instructor Biography: Eric Kolaczyk is Professor of Statistics, and Director of the Program in Statistics, in the Department of Mathematics and Statistics at Boston University, where he also is an affiliated faculty member in the Program in Bioinformatics, the Program in Computational Neuroscience, and the Division of Systems Engineering. Prof. Kolaczyk's main research interests currently revolve around the statistical analysis of network-indexed data, and include both the development of basic methodology and inter- disciplinary work with collaborators in bio-informatics, computer science, geography, neuroscience, and sociology. Besides various research articles on these topics, he has also authored two books in this area— Statistical Analysis of Network Data:

Methods and Models (Springer, 2009) and Statistical Analysis of Network Data with R (Springer, 2014), joint with Gabor Csardi. He has given various short courses on material from his book in recent years, including for the Center for Disease Control (CDC) and the Statistical and Applied Mathematical Sciences Institute (SAMSI) in the US, as well as similar venues in Belgium, England, and France, Prof. Kolaczyk has served as associate editor on several journals, including currently the Journal of the American Statistical Association and the IEEE Transactions on Network Science and Engineering. He has also served as (co) organizer for workshops focused on networks and network data, including as lead organizer for a yearlong program at SAMSI in 2010-11. He is an elected fellow of the American Statistical Association (ASA), an elected senior member of the Institute for Electrical and Electronics Engineers (IEEE), and an elected member of the International Statistical Institute (ISI).

SC3: Introduction to Statistical Machine Learning

FULL DAY: 8:00 am to 5:00 pm Yufeng Liu

University of North Carolina at Chapel Hill Genevera Allen

Rice University

Overview: This full day short course will provide an overview of statistical machine learning techniques with applications to the analysis of big biomedical data. Both supervised and unsupervised techniques will be covered. Supervised learning techniques include penalized regression such as LASSO and it variants, support vector machines, Boosting, and tree-based methods. Unsupervervised learning techniques include dimension reduction methods such as principal components analysis and non-negative matrix factorization, clustering analysis, and network analysis with graphical models. The main emphasis will be on the analysis of real high-dimensional data sets from various scientific fields, including genomics and biomedical imaging. The techniques discussed will be demonstrated in R.

Instructors Biography: Yufeng Liu is professor in Department of Statistics and Operations Research, Department of Biostatistics, and Department of

Continued on following page....

Genetics at UNC-Chapel Hill. His current research interests include statistical machine learning, high dimensional data analysis, and bioinformatics. He has taught statistical machine learning courses multiple times at UNC, as well as short courses on this subject at Joint Statistical Meetings and Biostatistics Summer Institutes at University of Washington. Dr. Liu received the CAREER Award from National Science Foundation in 2008, and Ruth and Phillip Hettleman Prize for Artistic and Scholarly Achievement in 2010. He is a fellow at American Statistical Association and an elected member of International Statistical Institute.

Genevera Allen is the Dobelman Family Junior Chair and Assistant Professor in Statistics and Electrical and Computer Engineering at Rice University. She also holds a joint appointment at the Jan and Dan Duncan Neurological Research Institute at Baylor College of Medicine. Dr. Allen's research focuses on developing statistical methods to help scientists make sense of their 'big data' in applications such as high-throughput genomics and neuroimaging. Her work lies in the areas of modern multivariate analysis, graphical models, statistical machine learning, and data integration or data fusion. She has taught statistical machine learning courses for many years at Rice University as well as short courses on this subject at the Biostatistics Summer Institutes at University of Washington and the Data Science Summer Institute at Rice University. Dr. Allen has represented the American Statistical Association in the "This is Statistics" public relations campaign and is the recipient of several honors including the David P. Byar Young Investigator travel award and the International Biometric Society's Young Statistician Showcase award. Current emerging area is genomics and modern genetics (GWAS and sequencing data).

SC4: Statistical Genetic and Genomic Analysis of Complex Traits with GWAS and Next Generation Sequencing Data

HALF DAY: 8:00 am to 12:00 noon Hongyu Zhao Yale University Fei Zou University of North Carolina at Chapel Hill

Overview: Recent advances in genotyping and

sequencing technologies have revolutionized biological and biomedical research. Great efforts have been taken to uncover genetic factors of many complex human disorders and traits with genome-wide association and next generation sequencing studies. An unprecedented wealth of data generated from these studies has created great opportunities and challenges for statisticians and biomedical researchers. In this short course, we will cover genotyping and sequencing technologies, and state-of-the-art statistical approaches to analyzing and interpreting GWAS and Next Generation Sequencing data. Topics to be covered include:

- » Introduction to genetics, and genomic analysis technologies and software
- » Introduction to GWAS data processing and analysis
- » Introduction to next generation sequencing data and analysis
- » Real data examples on psychiatric diseases, autoimmune disorders, cancer, and anthropological traits.

Instructors Biography: Dr. Hongyu Zhao is the Ira V. Hiscock Professor of Biostatistics and Professor of Statistics and Genetics. Chair of the Biostatistics Department and the Co-Director of Graduate Studies of the Inter-Departmental Program in Computational Biology and Bioinformatics at Yale University. His research interests are the applications of statistical methods in molecular biology, genetics, drug developments, and personalized medicine. Some of his recent projects include large scale genome wide studies to identify genetic variants underlying complex diseases (schizophrenia, bipolar, autism, and substance abuse), biological network modeling and analysis, disease biomarker identification through proteomics, genome annotations, microbiome analysis and systems biology study of herbal medicine. Dr. Zhao has been teaching statistical genetics and bioinformatics at Yale since 1996 and has offered multiple short courses on statistical genetics and genomics at JSM, ENAR, Deming Conference, and other statistical and genomics conferences.

Dr. Fei Zou is Professor in Department of Biostatistics and Department of Genetics at UNC-Chapel Hill. She is also the director of the Biostatistics/Bioinformatics core of UNC Neuroscience Center Research Cores. Her research interests include genome-wide association mapping with emphasis on assessing population stratification, and bias correction; QTL mapping with *Continued on following page....*

Short Courses Sunday March 6

experimental mouse data; integrated statistical analysis of high-dimensional genetics and genomics data, and differential gene expression and methylation analysis of next generation sequencing data. Dr. Zou is a co-investigator on multiple association studies on schizophrenia, early child brain development, and cystic fibrosis. She has taught statistical genetics and genomic courses multiple times at UNC and SAMSI.

SC5: Bayesian Evidence Synthesis in Medicine

HALF DAY: 8:00 am to 12:00 noon Heinz Schmidli Novartis, Basel, Switzerland David Ohlssen

Novartis, New Jersey

Overview: In the past decade, evidence synthesis has become an indispensable approach in many areas of medicine. Using combined information from several clinical studies, the effectiveness and safety of available treatments can be compared, providing guidance on how to best treat patients. Evidence synthesis approaches are also important in the design and analysis of clinical studies, for example when planning to use historical placebo information, or in non-inferiority studies. Bayesian methods are ideally suited to combine information from various sources. This course will describe the main meta-analytic models for evidence synthesis of clinical trials. These models take into account differences among studies by use of covariate information and random-effects. Applications and examples will motivate and illustrate the methods, covering topics such as comparative effectiveness research, clinical trials with historical controls, non-inferiority and biosimilar clinical trials, subgroup meta-analyses, and safety meta-analyses. The course will cover:

- » Evidence synthesis in medicine
- » Brief introduction to Bayesian inference and computation
- » Evidence synthesis tools: Meta-analysis, Network meta-analysis, Meta-regression.
- » Prediction based on meta-analytic models
- » Assessing and dealing with conflicting information

Instructors Biography: Dr. Heinz Schmidli is a Biometrical Fellow within the Novartis Statistical Methodology group, based in Basel, Switzerland. He studied Mathematics at the University of Basel, and received his PhD in Statistics in 1994. In 2012 he received the Paul-Martini-Prize of the GMDS (jointly with Tim Friede), and in 2013 the Novartis leading scientist award. He has authored or co-authored more than 50 articles in peer-reviewed journals, and is author of a book.

Dr. David Ohlssen is currently a Biometrical Fellow and Bayesian focus team lead, within the Novartis statistical methodology group, based in East Hanover New Jersey. Since joining Novartis in 2007, he has developed a broad range of experience in applying novel statistical approaches within a drug development setting. Previously, after completing his PhD in Biostatistics at the University of Cambridge, he worked as a research fellow at the MRC Biostatistics Unit (Cambridge UK), where his interests included: diagnostics for Bayesian models, novel clinical trial design and statistical methods for the profiling of health-care providers. His professional activities include serving as a member of the Bayesian DIA Working Group and within the group acting as the chair of the safety meta-analysis sub-team.

SC6: Practical Solutions for Simple Problems with Bad Consequences in Clinical Trials

HALF DAY: 1:00 pm to 5:00 pm Peter Thall

University of Texas, M.D. Anderson Cancer Center

Overview : Many conventional methods used for clinical trial design or analysis have undesirable properties that are not obvious and often are not well understood. In many cases, the problem may have very undesirable consequences if it is ignored. This half day short course will describe a variety of such problems, and provide a practical alternative for each. Topics will include (1) consequences of ignoring treatment efficacy in dose-finding trials, (2) misinterpreting hypothesis test-based designs, (3) dealing with late onset toxicities, (4) futility or safety monitoring rules that may not work well in practice, (5) consequences of ignoring patient heterogeneity (6) scientific and ethical problems with adaptive randomization in comparative trials, (7) estimation bias, (8) some counterintuitive relationships between early response rate and mean survival time, (9) decision making for multi-stage dynamic treatment regimes, and (10) SMART (Sequential Multiple Assignment

Continued on following page....

"Greetings From Austin - Capitol of Texas" postcard mural, at the Roadhouse Relics building

Randomized Trial) designs. <u>The examples will include</u> <u>very little mathematical detail</u>, but attendees should have some knowledge of elementary probability and statistics. The course is appropriate for anyone involved in clinical trial design, conduct, or analysis, including statisticians, physicians, research nurses, administrators, professionals in the pharmaceutical industry, or federal employees in the NIH or FDA.

Instructor Biography: Peter Thall has been a Science Faculty member at M.D. Anderson Cancer Center since 1990, where he holds the Anise J. Sorrell Endowed Professorship. He is a Fellow of the American Statistical Association (ASA) and the Society of Clinical Trials, and received the Don Owen award from the San Antonio chapter of the ASA in 2014. Dr. Thall has pioneered application of Bayesian methods in medical research, designed hundreds of clinical trials, published over 200 papers and book chapters in the statistical and medical literature, and presented 28 short courses and over 190 invited talks. His current research interests include Bayesian utility-based clinical trial design, nonparametric Bayesian methods, bias correction, and dynamic treatment regimes. He is an Associate Editor for the journals Clinical Trials and Statistics in Biosciences, an ASA Media Expert, a member of the International Biometric Society ENAR Regional Advisory Board, and is Principal Investigator of the NIH/NCI RO1 grant "Statistical Methods for Complex Cancer Trials."

ENAR 2016 Tutorials

	REGISTRATION RECEIVED		
	By Feb.1	After Feb.1	
Member	\$75	\$85	
Non-Member	\$85	\$95	
Student	\$40	\$50	

T1: Topics in High-Performance Computing with R

Monday, March 7 | 8:30 am to 10:15 am John W. Emerson

Yale University

Description: This tutorial will introduce you to topics in high-performance computing with R. We will touch upon a few important language fundamentals relating to memory management and algorithmic efficiency. We will quickly explore the parallel package (containing snow and multicore), but will concentrate on the elegant framework for parallel programming offered by packages for each and the associated parallel backends. We will conclude with basic examples of handling larger-than-RAM numeric matrices and use of shared memory. Take-away material will include a concise example authoring an R package that includes C/C++ code, uses Rcpp, and roxygen2 for efficient documentation.

Instructor Biography: John W. Emerson (Jay) is Director of Graduate Studies in the Department of Statistics at Yale University. He teaches a range of graduate and undergraduate courses as well as workshops, tutorials, and short courses at all levels around the world. His interests are in computational statistics and graphics, and his applied work ranges from topics in sports statistics to bioinformatics, environmental statistics, and Big Data challenges. He is the author of several R packages including bcp (for Bayesian change point analysis), bigmemory and sister packages (towards a scalable solution for statistical computing with massive data), and gpairs (for generalized pairs plots). His teaching style is engaging and his workshops are active, hands-on learning experiences.

T2: Interactive Data Visualizations in R with shiny and ggplot2

Monday, March 7 | 10:30 am to 12:15 pm Garrett Grolemund

RStudio

Description: Data visualizations are one of the most useful tools for scientific discovery and communication. They become even more useful when they are enhanced with interactive techniques like linked brushing, hover effects, and zooming. However, interactive visualizations typically require specialized or proprietary software that cannot be easily installed or extended. As a result this valuable technique often goes underused. This tutorial will teach you an easy workflow for creating both static and interactive data visualizations with R, a free and open source computer language that is widely used by biostatisticians. You will learn how to make static plots with the grammar of graphics, an easy to use system for building plots. With the grammar of graphics, you can describe---and build---any plot by describing three components: a data set to visualize, a geometric object to use to represent individual observations, and a set of mappings between variables in the data set and visual properties of the geometric objects (like location, size, and color). We will use the popular ggplot2 package to implement the grammar of graphics. We will then look at how to add interactivity to your plots with Shiny, an R package that builds interactive data displays. We will focus on the newest features of Shiny, which enable interactive graphics. Participants will finish the tutorial by building their own visualizations that use linked brushing and hover effects.

Instructor Biography: Garrett Grolemund is a Data Scientist and Master Instructor at RStudio. He holds a *Continued on following page....* Ph.D. in Statistics and specializes in teaching others how to do data science with open source tools. He is a long time user and advocate of R; he wrote the popular lubridate package for working with dates and times in R, and is the editor of the Shiny development center at shiny.rstudio.com, which is the primary resource for learning how to build interactive web applications with R. Garrett designed and delivered the highly rated video series "Introduction to Data Science with R" by O'Reilly media, and he is the author of Hands-On Programming with R, as well as the co-author, with Hadley Wickham, of R for Data Science, a forthcoming book by O'Reilly media.

T3: Clinical Trial Designs for Validating Prognostic and Predictive Markers in Oncology

Monday, March 7 l 1:45 pm – 3:30 pm Daniel J. Sargent Mayo Clinic

Description: Increasing scientific knowledge is creating both substantial opportunities and challenges in oncology drug develop. As diseases are sub-stratified into often biomarker-based groups, usual paradigms for phase II and III disease may no longer apply. In some circumstances, carefully conducted retrospective-prospective analysis may provide sufficient evidence of a predictive biomarker for clinical use. Prospectively, enrichment designs are appropriate when preliminary evidence suggest that patients with/without that marker profile do not benefit from treatments in question; however this may leave questions unanswered regarding the activity of an agent in a larger but still relevant population. An unselected design is optimal where preliminary evidence regarding treatment benefit and assay reproducibility is uncertain. The biomarker-based strategy design may be useful when there is a choice between many treatment options. Adaptive analysis designs allow for pre-specified marker defined subgroup analyses of data from a RCT. Umbrella or basket trials enroll large groups of patients with subsequent assignment to either individual randomized trials or single arm investigations. These trials may be disease specific, or may include patients from multiple sites who share a common biomarker status. We discuss features of these various novel design strategies in the context of multiple ongoing and planned real trials. Emphasis will be placed on practical considerations that may impact an academically

optimal design.

Instructor Biography: Daniel J. Sargent, Ph.D. is the Ralph S. and Beverly E Caulkins Professor of Cancer Research at the Mavo Clinic. He is the Group Statistician for the Alliance for Clinical Trials in Oncology and the Director of Biostatistics Shared Resource at the Mayo Clinic Comprehensive Cancer Center. Dr. Sargent co-chaired a joint NCI-EORTC committee on methodology for tumor marker studies, was a member of the FDA panel on endpoints for colon cancer clinical trials, and from 2007 - 2013 was a member of the US NCI Clinical Trials Advisory Committee, which oversees all NSI funded cancer clinical trials in the United States. He presently serves on the Clinical Trial Design Task force of the NCI's Investigational Drug Steering Committee. He has published extensively in colorectal cancer treatment in the elderly, optimal clinical trial endpoints, and prognostic and predictive biomarkers. He has authored over 290 peer-reviewed manuscripts, book chapters, editorials, and letters.

T4: A New Paradigm for Finding the Subset of Patients who Benefit from a Test Treatment

Monday, March 7 I 3:45 pm – 5:30 pm Richard Simon National Cancer Institute Noah Simon University of Washington

Description: Conventionally defined diseases are often heterogeneous in biology, natural course and response to treatment. The traditional paradigm of conducting broad eligibility randomized clinical trials followed by post-hoc subset analysis does not provide a reliable or efficient basis for precision/personalized medicine. Broad eligibility clinical trials often lead to subsequent over-treatment of patient populations and conventional post-hoc subset analysis often does not provide reliable or actionable findings. In this tutorial we describe an alternative paradigm for finding and evaluating the subset of patients who benefit from a test treatment relative to a control. The paradigm re-formulates the problem as one of developing a predictive classifier and obtaining valid estimates of the properties of the classifier such as the treatment effect in the population predicted to benefit from the test treatment. We describe two contexts for the application of this paradigm. One context involves prospective Continued on following page....

application using an Adaptive Enrichment Design. The other context involves retrospective application using the principles of the Prospective/Retrospective Design. We describe the development of predictive classifiers for binary outcome and time-to-event data. Several types of predictive classifiers are described. The approaches are applicable to settings with a small number of candidate features are available and settings with high-dimensional feature sets. We describe how the approach provides an intended use population and describe use of re-sampling and permutation techniques to obtain valid estimates of treatment effect for that population. Recent results by us and related work by others will be described.

Instructors Biography: Richard Simon is Chief of the Biometric Research Program at the National Cancer Institute and head of the Computational and Systems Oncology Branch. He is a fellow of the American Statistical Association and a former member of the Oncologic Drug Advisory Committee of the FDA. He is the architect of BRB Array Tools software and author of Using Genomics in Clinical Trials and Predictive Medicine (Cambridge U. Press 2013). He is the recipient of the 2013 Karl Peace award of the American Statistical Association "for contributions that have played a pivotal role in bridging the gap among statistics, clinical research, and translational medicine to improve human health".

Noah Simon (Ph.D. in Statistics from Stanford University) is an Assistant Professor in the Department of Biostatistics at the University of Washington. He works on problems at the intersection of statistics, biology and computer science, developing algorithms to build scientific knowledge from modern high-throughput technologies. His interests include high dimensional modeling and inference, selection-bias in highthroughput experiments, biomarker development, and adaptive clinical trial design. He was a Weiland Fellow and currently holds the Genentech Endowed Professorship in Biostatistics at the University of Washington

T5: Introduction to High Throughput DNA Sequence Data Analysis Using R / Bioconductor

Tuesday, March 8 | 8:30 am – 10:15 am Martin Morgan

Roswell Park Cancer Institute

Description: Modern methods of high-throughput genomic data generate large primary data sets that

require significant data manipulation and statistical summary before arriving at biological insight. This workshop starts by outlining basic DNA sequence analysis work flows, from primary data generation to biological interpretation. We use this outline, and especially the 'RNA-seq known gene differential expression' work flow, to identify relevant data management and statistical issues. The workshop then steps through R and Bioconductor code to implement essential stages in data management and statistical analysis. We conclude by briefly contrasting differences in the biological, technological and statistical aspects of RNA-, DNA-, and methyl-seq, with a brief overview of the resources available for further study.

Instructor Biography: Dr. Martin Morgan leads the successful open source, open development Bioconductor project (http://bioconductor.org) for the analysis and comprehension of high throughput genomic data. Dr. Morgan's interests include statistical computation, integrative analysis of multiple 'omics data sets, and effective data comprehension.

T6: Adaptive designs for Confirmatory Clinical Trials

Tuesday, March 8 | 1:45 pm – 3:30 pm Franz König

Medical University of Vienna

Description: Since the first methodological papers on adaptive designs, some published more than 25 vears ago, adaptive designs have gained increasing attention in drug development. Especially in pivotal phase III trials, their use is subject to enhanced scrutiny by regulators as the increased complexity of flexible study designs also increases the risk of operational and statistical biases and hidden fallacies. Broad enthusiasm about potential applications of such designs faced critical positions regarding their statistical efficiency. Despite, or possibly because of, this controversy, the methodology and its areas of applications grew steadily over the years, with significant contributions from statisticians working in academia, industry and agencies around the world. In the meantime, such types of adaptive designs have become the subject of three major regulatory guidance documents in the US and Europe and the field is still evolving. The main goal of this tutorial is to give an introduction to the key principles and statistical methodologies of adaptive designs for confirmatory clinical trials. Important applications of Continued on following page....

adaptive designs include sample size reassessment, treatment selection procedures, and population enrichment designs. The change of design parameters at an adaptive interim analysis may depend on any internal and external data available. Using adaptive multiple test procedures the type I error rate can be controlled even if the selection rule, the number of selected treatments or the final sample sizes are not prefixed. The tutorial shall provide an overview of methods from the published literature including the most recent developments. Special emphasis is put on sample size reassessment and multiple hypotheses testing with adaptive designs. Regulatory issues and case studies will be discussed.

Instructor Biography: Franz König is an Associate Professor at the Section of Medical Statistics at the Medical University of Vienna, Austria. He serves on several data safety monitoring boards (DSMB) as independent statistical expert. From 2008 till 2010 he was seconded to the European Medicines Agency (London, UK) as statistical expert in the Unit Human Medicines Development and Evaluation. At the EMA he held the Scientific Secretariat of the then newly founded Biostatistics Working Party (BSWP). He was involved in the development of guidelines and assessment of statistical methods and clinical trial protocols. His main research interests are multiple testing, adaptive/flexible designs, interim analyses and data safety monitoring boards. Franz has served as Guest Editor for Special Issues in Biometrical Journal and Statistics in Medicine. He is currently the work package leader of the work package "adaptive designs" in the EU FP7funded research project IDEAL and deputy coordinator of an EU Horizon 2020 funded Marie Curie ITN network IDEAS on early drug development studies.

T7: Quantile Regression for Survival Analysis

Tuesday, March 8 | 3:45 pm – 5:30 pm Limin Peng

Emory University

Description: Quantile regression offers a useful alternative strategy for analyzing survival data. It formulates covariate effects on the quantile(s) of an event time of interest. Such a modeling perspective entails easy in-

terpretations of covariate effects, and allows for a comprehensive and flexible evaluation of the association between covariates and the survival outcome. Moreover, many existing quantile regression methods for survival analysis enjoy simple and stable computation. By these nice features, quantile regression has emerged as a valuable practical tool that can provide in-depth investigations of survival studies. In this tutorial, I plan to introduce the fundamentals of quantile regression (including basic concepts, modeling strategies, computing features and interpretations). Through reviewing and comparing with traditional regression methods for survival data, I will elaborate the benefits of conducting quantile regression analysis in survival settings. I will provide an overview of currently available methods for guantile regression with survival data, with a particular focus on a few popular approaches developed for randomly censored data. Available computing resources will be discussed. Examples will be presented to illustrate method applications and implementation.

Instructor Biography: Dr. Limin Peng is an Associate Professor in the Department of Biostatistics and Bioinformatics at the Emory University. She has been an active researcher in the areas of survival analysis and quantile regression. She has published a series of work in major statistical journals on quantile regression methods (or extensions) for various types of survival data, including randomly censored data, competing risks data, semicompeting risks data, truncated data, censored longitudinal data, and recurrent events data. Dr. Peng has disseminated novel applications of quantile regressions to research communities in Neurology, Dialysis, and Cystic Fibrosis. Dr. Peng has extensive teaching experiences on topics related to this tutorial. She has taught courses, "Survival Analysis Methods" and "Quantile Regression" at Emory University and taught a tutorial on quantile regression for survival analysis at 2014 ENAR Spring meeting and a short course on the same topic at Centers for Disease Control and Prevention.

ENAR 2016 Round Tables

Registration is Required \$40.00

R1: Challenges in Cancer Epidemiology in the Era of Genomic Medicine

Colin Begg

Sloan Kettering Cancer Center

Description: For decades cancer epiderine opists have investigated cancer risk accorate of one sing studies in which the discuss have in studied with the anatomic site of drain a thic cancer is the organizing framework. If this clicical estarch arena the advent of powerful about four to a for examining tumors at the molecular end of are altering the landscape of cancer investigation to one in which cancers are increasingly being classified on the basis of somatic mutations and other tumor characteristics. In this session we will discuss the implications of these trends for the design and analysis of epidemiologic studies of cancer risk.

R2: Statistical Issues in the Analysis of Electronic Health Record Data

Sebatstein Haneuse

Harvard University

Description: Electronic health record (EHB) data present an incredibly appealing opportu blic health and medical research. Relativ dicated designs, EHR data oft a broad rand ames and nore, they are typically in rea Vevertheless, the use of EHR purposes is subject to many chaldata for r lenges including: (i) accurate extraction of text-based information; (ii) missing data; (iii) measurement error and misclassification and (iv) the control of confounding. While these issues arise in other contexts, the complexity and high-dimensional nature of EHR data poses additional challenges for statisticians. The purpose of this roundtable is to provide a forum for statisticians and analysts to discuss these issues, in general as well as in their own contexts, and also to discuss recent methodologic developments in the area.

R3: Precision Medicine

Michael Kosorok

University of North Carolina at Chapel Hil

Description: We will discuss received in a reasion medicine and key roles. First biodiate the pay, a cluding important aspects or bloch discovery and evaluation. We will also examine the multi-disciplinary characteristic the research and how recent developments in stanting machine learning are being driven by biostatistical considerations.

R4: Big Data in Healthcare Evaluation: The Role for Biostatistics

David Ohlssen

Novartis

Description: Traditionally, big data has been defined as a dataset too large to be efficien stored, organized, and analyze able software. This co by a combin city and variety. e of big data has enor-It has ealthcare sector. For example, mous p h and analysis of large real-world datathe aggree \bullet sets adds power, allows trends and associations to be more readily observed, and overcomes some of the limitations associated with randomized clinical trials. The growing area of big data provides enormous potential for contributions by biostatisticians. However, so far our profession and ENAR have not been highly involved in big data activities. Within the context of healthcare evaluation this roundtable aims to discuss big data and the role for biostatistics. Possible topics for discussion include:

- 1. The skills we need to be involved with big data
- 2. Combining scientific knowledge (e.g. knowledge about pharmacology or design) with big data
- 3. Is big data just for prediction or can we make progress with causal inference

Continued on following page....

- 4. Trials of the future will utilize censors and gadgets that potentially provide much richer more complex data from clinical research
- 5. Data transparency initiatives have led to most pharmaceutical companies providing access to their individual patient clinical trial. What can be done to explore this new abundance of clinical data
- 6. Computation developments such as Hamilton Monte Carlo and STAN

R5: Quantitative Safety Review at FDA's Center for Drug Evaluation and Research (CDER)

Mark Levenson

Food and Drug Administration

Description: This round table will be sees succent examples and future direction. On us of the tive safety review at FDA's Center for Drug tive value and Research (CDFm, Thefolle vin stoples will be the bases of the fiscus ion

- » Exactors or quantitative safety review including meta-analyses, large safety trials, and observational studies conducted by drug companies or the FDA to address important drug safety issues.
- » Implications of recent and proposed legislation and guidances and new data sources.
- » Statistical careers at the FDA/CDER, particularly those involving drug safety.

R6: Leadership in Statistics

Dubois Bowman

Columbia University

Description: Statistical leadership is critic given the growing demand for analyti coupled with the emerge varied quantitative dicipli we will discuss L tatisticians. We being an effective leader, will exa and in interdisciplinary settings. both with We will also over ways that statisticians can prepare for leadership roles during various stages of their careers and tips for identifying leadership positions.

R7: Balancing Responsibilities in Academia: Methodological and Collaborative Research, Teaching, and Service

Amy Herring

University of North Carolina at Chapel Hill

Description: Faculty positions in biostatistics provide many interesting opportunities to engage in methodological and collaborative health science research, collaborate with students and junior scholars, and improve the home institution and profession more broadly through service activities. During this roundtable, we will share goals and formulate strategies for success (and recipes for stress) in exploring the sample space of academic opportunities. Amy Herring is Professor and Associate Chair of Biostatistics at UNC-Chapel Hill. She is a former ENAR President and recently completed a term as Chair of UNC's Committee on Appointment, Promotion, and Tenure.

R8: Publishing Without Perishing: Strategies for Success in Publishing in Biostatistical Journals

Marie Davidian

North Carolina State University

Description: Contributing to the adva our discipline through publication of /iewed journals is a fundamen and not-so-junior like. Suces that it will be rchers and practitioners widely t. In addition, funding agencies and who stan academic institutions place considerable importance on a successful record of publication. Accordingly, understanding the peer review and editorial processes of top journals and mastering the art of writing an effective journal article are keys to success in publishing. How does one determine the best outlet for one's work? What are the essential elements of a successful journal article? How does one maximize the chance of acceptance? What strategies can ensure that a published paper is read and cited? How does one make optimal use of limited space and additional supplementary material in conveying the message? What are the roles of the editor, associate editor, and referees? What considerations do editors use when evaluating a paper? This roundtable will provide a forum for candid discussion of these and other questions.

Round Tables Monday March 7 | 12:15 pm - 1:30 pm

R9: Practical Considerations for Teaching Biostatistics in a Hybrid, Blended, or Online Format

Jane Monaco

University of North Carolina at Chapel Hill

Todd Schwartz

University of North Carolina at Chapel Hill

Description: Whether you are conside odatina an existing biostatistics course veloping a new one, n ing the content from traditio e some courses are tai debate surrounding the format continues. Meanwhile, effectiven gaining in popularity are "Hybrid" or "Blended" formats, in which students are expected to view pre-recorded lectures before coming to class; class-time is devoted to active learning strategies and hands-on practice. This roundtable will provide an opportunity to discuss practical considerations, best practices and lessons

learned in teaching biostatistics as classroom technology, online resources and student expectations continue to evolve. Discussion topics will include:

- What technologies are most effective? Considerations include ease of use, compatibility, and cost. Technology to be discussed may include desktop recording software, grading options, and classroom technology.
- What resources are available? Rather than "reinventing the wheel," what existing options are helpful and available online?
- » How can you avoid a "flipped classroom" flop? What strategies are effective for delivering content and administering the course?
- » Roadblocks what happens when students or administrators are reluctant to embrace an innovative classroom model?
- » What is the time commitment for developing or updating a course with a hybrid, blended or online format?

Participate in Student-Focused Elements of the Scientific Program

The Sunday night mixer presents an ideal opportunity to obtain feedback on your work in our Annual ENAR Poster session. This year we will conduct our fifth Poster Competition for the session. Prizes will be announced within topical areas in the Tuesday morning Presidential Invited Address session. A student winner will be selected within each topical area. Watch for details on entering the competition on the website when the meeting registration becomes available.

Join Us for the Tuesday Evening Dinner Jul Social Event Reduced Constration fee offered to students to attend (see page 7).

Educational and Professional Development Opportunities

Be sure to take advantage of the educational offerings to be held during the meeting – short courses, tutorials, and roundtable discussions (see pages 94 - 105).

Network with Your Fellow Students

Back by popular demand, a CENS mixer will be held the evening of Monday, March 7, 2016. This is a great way to meet and greet your students from other graduate programs. Don't miss this opportunity to begin building connections with your future colleagues and friends.

ENAR 2016 Career Placement Services

Hours of Operation

Sunday, March 6	4:00 pm – 6:30 pm
Monday, March 7	9:30 am – 4:30 pm
Tuesday, March 8	9:30 am – 3:30 pm

General Information

The ENAR 2016 Career Placement Service helps match applicants seeking employment and employers. The service includes online registration and electronic uploading and distribution of applicant and employer materials through a password-protected online webbased facility. Visit the ENAR website at http://www. enar.org/meetings2016/career_center to register for the placement center.

Job announcements and applicant information can be readily accessed electronically, applicant information will be opened prior to the meeting, and materials will remain available online after the meeting. ENAR provides separate large reading/planning rooms for employers and applicants to review materials, dedicated placement center personnel onsite, and optional private interview rooms available for employers. Employer and applicant reading/planning rooms are equipped with a small number of computers with internet connections, and printers. However, to make the most efficient use of the Placement Center, we recommend that participants register listings in advance of the meeting to maximize visibility, explore the database before the meeting, and, if attending, have a laptop computer on-site.

Employers

Each year numerous qualified applicants, many approaching graduation, look to the ENAR Placement Center to begin or further their careers. Organizations including government agencies, academic institutions, and private pharmaceutical firms all utilize the ENAR Career Placement Service. ENAR recognizes the value the Career Placement Service provides to members and, to make it more efficient and effective for both employers and applicants, uses an electronic registration process and an online database of applicant resumes. All registered employers will receive full access to the placement center for up to 3 company representatives, up to 4 job postings, pre-meeting access to the online applicant database of resumes, full conference registration for up to 3 representatives, and access to the employer placement center room. ENAR is also offering those organizations seeking private interview space the option to reserve a private room for interviews in 4-hour increments.

Employer Registration

The registration fee for employers includes full access for up to four position postings and up to 3 representatives, pre-meeting access to the online applicant database of resumes, up to 3 full conference registrations, and access to the employer placement center room.

Employer Resource Area

ENAR will provide internet access, laptops, and printers available in the employer resource room for viewing the applicant resume database. However, for most efficient use of the resource room, we recommend employers have on-site access to a personal laptop computer.

Interview Suites

For an additional fee, employers may reserve private interview suites each day on a first-come, firstserved basis.

Applicants

If you have an interest in a career in biometrics, you can utilize the ENAR Career Placement Center started or get ahead. Many employers attend the ENAR Spring Meeting each year seeking qualified applicants. All registered applicants may register for up to three job classification types, and receive full access to the placement center applicant room and the online employer job posting database. Please note that to fully utilize the online database, we recommend applicants register in advance to maximize visibility, explore the database shortly before the meeting and, if attending, have a laptop computer on-site. If you are planning to interview and participate on-site you must also register for the conference and pay the meeting registration fee.

er to get	tunities for qualified applicants to meet employers ar
the ENAR	learn about organizations employing biostatisticians.

Visibility to Employers

Applicant Registration

The Online Applicant database is made available to all employers prior to the opening of the placement center.

The ENAR Career Placement Center provides oppor-

applicants to meet employers and

Applicant Resource Area

ENAR will have internet access, three laptops, and printers in the applicant room for viewing the employer job posting database. However, for most efficient use we recommend applicants have on-site access to a personal laptop computer.

Deadlines	By Feb.1	After Feb.1
Employer (3 reps/ 4 job postings)	\$1,550	\$1,675
Private Interview Room (Per 4-hour increments)	SOLD	OUT
Additional Representatives (Cost per person includes conference registration)	\$500	\$550
Additional Job Postings	\$100	\$150

Employer

Registration Instructions, Deadlines, and Fees

ALL employers must FULLY complete an online Employer Form located at: http://www.enar.org/meetings2016/career_center/

for each position listing. Attachments may be included.

Deadlines	By Feb.1	After Feb.1
Regular Registration	\$50	\$60
Student Registration	\$25	\$35

Applicant

Registration Instructions, Deadlines, and Fees ALL applicants must FULLY complete an online Applicant Form located at: http://www.enar.org/CareerCenter/ for each job classification.

Applicants

PLEASE NOTE: If you are planning to interview and participate on-site you must also register for the conference and pay the meeting registration fee.

ENAR 2016 Registration Form

FIRST NAME MIDDLE II	INITIAL LAST NAME	
→ HIGHEST DEGREE: □ BACHELORS □ MASTERS □ DOCTORATE OF	DR MEDICAL DEGREE OTHER	
о П		
Image: The second se	ME FOR BADGE	
ORGANIZATION		
HAILING ADDRESS CITY	STATE ZIP CODE	COUNTRY
ΎΡ Π		
DAYTIME PHONE FAX	E-MAIL	
Membership in Participating Societies (Check all that apply.)	Roundtables	
ENAR WNAR ASA IMS IBS	Preregistration is required. Indicate the number of your 1st. 2nd. and 3rc	1 choices:
Meeting Fees (To be paid by all applicants.)	1st # 2nd # 3rd #	
Registration tees, less a \$100 administrative tee, will be retunded it written notice is received by February 1, 2016 . Requests for refunds will not be honored after	Fee: \$40 \$	
February 1, 2016. No refunds will be issued for cancellation of short	Please make lunch vegetarian 🔲 YES 🛄 NO	
courses, tutorials, roundtables or the social event.	Council for Emerging and New Statisticians (CENS) Lunch,	Tuesday, March 8
Meeting Kegistration Fees	I would like to join a group of attendees for a Tuesday networking lunch	
\$400 (\$475 after 2/1) \$	(at thy own expense). The state into	
ASA Member (not a member of ENAR/WNAR/IBS)	rilial Ployialli ruilial I would like to receive the Final Abstract Book (vou MUST check one)	
\$540 (\$615 after 2/1) \$	Mobile App Only D Small Program Book – (no additional charge	e)
IMS Member (not a member of ENAR/WNAR/IBS)	(Note that the full Final Program & Abstract book will be available on the	ENAR website)
\$420 - \$20 IMS contribution = \$400 (\$475 arter 2/1) \$	Tuesday Night Dinner, Entertainment, and Networking Eve	nt
\$590* (\$665 after 2/1) \$	Student: \$50	LD OUT
*Includes membership in ENAR through December 31, 2016	Memhershin	
Student (With letter from major professor verifying status.)	YES, I want to renew my 2016 ENAR membership or become	an
\$165 (\$175 after 2/1) \$	ENAR member.	
S200 (\$210 after 2/1) \$	Regular Member: \$140 Includes electronic access to the <i>Biometrics</i> Journal,	
□ Guest	JABES Journal and Biometric Bulletin Newsletter	
\$85 (\$95 after 2/1) \$	Regular Member: \$150	
Short Courses	either Discontinues Journal or Discontational And Biometric Bulleti	<i>in</i> newsletter
The short courses will be held on Sunday, March 6. (Indicate short course number.)	Regular Member: \$160	
Member (participating society) SC SC Full Day: \$325 (\$350 after 2/1)	JABES Journal, and <i>Biometric Bulletin</i> newsletter	
Half Day: \$225 (\$250 after 2/1)	Student Member: \$20	
Second Half Day: \$190 (\$215 after 2/1) \$	Includes electronic access to the <i>Biometrics</i> Journal, JARES Journal and <i>Biometric Bulletin</i> Newsletter	
Li Nonmember* SC		
Half Day: \$275 (\$300 after 2/1)	TOTAL PAYMENT	
Second Half Day: \$240 (\$265 after 2/1) \$	····	
Tutorials	FORM OF PAYMENT	
I he tutorials will be held on Monday, March 7 & Tuesday, March 8.	Check* Money Order* MasterCard Visa	AmEx
T1 \$75 (\$85 after 2/1) \$85 (\$95 after 2/1) \$40 (\$50 after 2/1)	*The check or money order should be in U.S. currency, payable to ENAR.	—
T2 \$75 (\$85 after 2/1) \$85 (\$95 after 2/1) \$\$40 (\$50 after 2/1)	Credit Card Information	
I3 ↓ \$75 (\$85 atter 2/1) ↓ \$85 (\$95 atter 2/1) ↓ \$40 (\$50 atter 2/1) I4 ↓ \$75 (\$85 atter 2/1) ↓ \$85 (\$95 atter 2/1) ↓ \$40 (\$50 atter 2/1)		
T5 \$75 (\$85 after 2/1) \$85 (\$95 after 2/1) \$40 (\$50 after 2/1)	CARD NO. EXP. D	JATE
T6 \$75 (\$85 after 2/1) \$85 (\$95 after 2/1) \$40 (\$50 after 2/1) T7 \$75 (\$85 after 2/1) \$85 (\$95 after 2/1) \$40 (\$50 after 2/1)	NAME ON CARD SIGN/	ATURE

Membership Application

Eastern North American Region (ENAR) | 12100 Sunset Hills Road, Suite 130 | Reston, VA 20190 Tel: 703–437–4377 | Fax: 703–435–4390 | E-mail: enar@enar.org

Renewal

□ New Member

PLEASE PRINT OR TYPE

FIRST NAME		MIDDLE IN	IITIAL	LAST NAME	
DEGREE		TITLE			
MAILING ADDRESS					
CITY		STATE	ZIP CODE	COUNTRY	
DAYTIME PHONE	FAX		E-MAIL		

MEMBERSHIP TYPE

Regular Member: \$140

Includes electronic access to the Biometrics Journal, JABES Journal and Biometric Bulletin Newsletter

Please Check One:

Regular Member: \$150

Includes print subscription of one journal, either D Biometrics Journal or D JABES Journal, and Biometric Bulletin newsletter

Regular Member: \$160

Includes print subscriptions to Biometrics Journal, JABES Journal, and Biometric Bulletin newsletter

□ Supporting Member: \$30

Student Member: \$20

Includes electronic access to the Biometrics Journal, JABES Journal and Biometric Bulletin Newsletter

I certify that		is a full-time student.
Signature:	Title:	

A Regular Member who is a member of a Region/National Group, termed Region/Group [R], may elect to become a Supporting Member in another Region/National Group, termed Region/National Group [S]. Supporting Members will pay the International portion of the dues once and pay the additional Regional dues only to Region/National Group [S]. A Regular Member may become a Supporting Member of more than one Region or National Group. A Regular Member At-large may also become a Supporting Members may not vote or hold any office in Regions/National Groups they support.

PLEASE INDICATE TWO AREAS OF INTEREST

Agriculture ((01)

Genetics and Heredity (05)

Molecular Biology and Biotechnology (06)

Animal and Veterinary Science (02)

Toxicology (07)

Clinical Trials (03)
Epidemiology (04)

PAYMENT INFORMATION

Enclosed is my Check, payable to ENAR (Remittance accepted only in US currency)

Please **charge** my membership dues to: Visa MasterCard AmEx

NATURAL RESOURCES

Ecology (08)	Forestry (11)
Entomology (09)	UWildlife (12)
Fisheries (10)	

	Μ	A	IL	Т	0
--	---	---	----	---	---

Wachovia Bank/ENAR P.O. Box 758929 Baltimore, MD 21275–8929

CARD NO.

EXP. DATE

ENAR 2016 Spring Meeting

March 6-9 2016 | JW Marriott Austin | Austin, TX

12100 Sunset Hills Road | Suite 130 Reston, Virginia 20190

> Phone 703-437-4377 Fax 703-435-4390 www.enar.org